diff --git a/examples/math.html b/examples/math.html index d282f8a5..03fe22a9 100644 --- a/examples/math.html +++ b/examples/math.html @@ -93,6 +93,79 @@ \] +
+
+

The Lorenz Equations

+ +
+ \[\begin{aligned} + \dot{x} & = \sigma(y-x) \\ + \dot{y} & = \rho x - y - xz \\ + \dot{z} & = -\beta z + xy + \end{aligned} \] +
+
+ +
+

The Cauchy-Schwarz Inequality

+ +
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] +
+
+ +
+

A Cross Product Formula

+ +
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} + \mathbf{i} & \mathbf{j} & \mathbf{k} \\ + \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ + \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 + \end{vmatrix} \] +
+
+ +
+

The probability of getting \(k\) heads when flipping \(n\) coins is

+ +
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] +
+
+ +
+

An Identity of Ramanujan

+ +
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = + 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} + {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] +
+
+ +
+

A Rogers-Ramanujan Identity

+ +
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = + \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] +
+
+ +
+

Maxwell’s Equations

+ +
+ \[ \begin{aligned} + \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ + \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ + \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} + \] +
+
+
+ @@ -103,9 +176,11 @@