Refactor
This commit is contained in:
parent
e424b049ba
commit
bc38a97025
33471
Examples.ipynb
33471
Examples.ipynb
File diff suppressed because one or more lines are too long
@ -1,716 +1,10 @@
|
||||
"""
|
||||
The :mod:`replot` module is a (sane) Python plotting module, abstracting on top
|
||||
of Matplotlib.
|
||||
The :mod:`replot` module is an attempt at an easier API to plot graphs using
|
||||
Matplotlib.
|
||||
"""
|
||||
import collections
|
||||
import math
|
||||
import os
|
||||
import shutil
|
||||
from replot.figure import Figure
|
||||
|
||||
import cycler
|
||||
import matplotlib as mpl
|
||||
# Use "agg" backend automatically if no display is available.
|
||||
try:
|
||||
os.environ["DISPLAY"]
|
||||
except KeyError:
|
||||
mpl.use("agg")
|
||||
import matplotlib.animation as animation
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import palettable
|
||||
|
||||
from replot import adaptive_sampling
|
||||
from replot import exceptions as exc
|
||||
from replot import grid_parser
|
||||
from replot import tools
|
||||
|
||||
|
||||
__VERSION__ = "0.0.1"
|
||||
|
||||
#############
|
||||
# CONSTANTS #
|
||||
#############
|
||||
_DEFAULT_GROUP = "_"
|
||||
|
||||
|
||||
# Default palette is husl palette with length 10 color cycle
|
||||
def _default_palette(n):
|
||||
"""
|
||||
Default palette is a CubeHelix perceptual rainbow palette with length the
|
||||
number of plots.
|
||||
|
||||
:param n: The number of colors in the palette.
|
||||
:returns: The palette as a list of colors (as RGB tuples).
|
||||
"""
|
||||
return palettable.cubehelix.Cubehelix.make(
|
||||
start_hue=240., end_hue=-300., min_sat=1., max_sat=2.5,
|
||||
min_light=0.3, max_light=0.8, gamma=.9, n=n).mpl_colors
|
||||
|
||||
|
||||
class Figure():
|
||||
"""
|
||||
The main class from :mod:`replot`, representing a figure. Can be used \
|
||||
directly or in a ``with`` statement.
|
||||
"""
|
||||
def __init__(self,
|
||||
xlabel="", ylabel="", title="",
|
||||
xrange=None, yrange=None,
|
||||
palette=_default_palette,
|
||||
legend=None, savepath=None, grid=None,
|
||||
custom_mpl_rc=None):
|
||||
"""
|
||||
Build a :class:`Figure` object.
|
||||
|
||||
:param xlabel: Label for the X axis (optional).
|
||||
:param ylabel: Label for the Z axis (optional).
|
||||
:param title: Title of the figure (optional).
|
||||
:param xrange: Range of the X axis (optional), as a tuple \
|
||||
representing the interval.
|
||||
:param yrange: Range of the Y axis (optional), as a tuple \
|
||||
representing the interval.
|
||||
:param palette: Color palette to use (optional). Defaults to a safe \
|
||||
palette with compatibility with colorblindness and black and \
|
||||
white printing.
|
||||
:type palette: Either a list of colors (as RGB tuples) or a function \
|
||||
to call with number of plots as parameter and which returns a \
|
||||
list of colors (as RGB tuples). You can also pass a Seaborn \
|
||||
palette directly, or use a Palettable Palette.mpl_colors.
|
||||
:param legend: Whether to use a legend or not (optional). Defaults to \
|
||||
no legend, except if labels are found on provided plots. \
|
||||
``False`` to disable completely. ``None`` for default \
|
||||
behavior. A string indicating position (:mod:`matplotlib` \
|
||||
format) to put a legend. ``True`` is a synonym for ``best`` \
|
||||
position.
|
||||
:param savepath: A path to save the image to (optional). If set, \
|
||||
the image will be saved on exiting a `with` statement.
|
||||
:param grid: A dict containing the width and height of the grid, and \
|
||||
a description of the grid as a list of subplots. Each subplot \
|
||||
is a tuple of \
|
||||
``((y_position, x_position), symbol, (rowspan, colspan))``. \
|
||||
No check for grid validity is being made. You can set it to \
|
||||
``False`` to disable it completely.
|
||||
:param custom_mpl_rc: An optional dict to overload some \
|
||||
:mod:`matplotlib` rc params.
|
||||
|
||||
.. note:: If you use group plotting, ``xlabel``, ``ylabel``, \
|
||||
``legend``, ``xrange``, ``yrange`` and ``zrange`` will be \
|
||||
set uniformly for every subplot. If you wish to set \
|
||||
different properties for every subplots, you \
|
||||
should pass a dict for these properties, keys being the \
|
||||
group symbols and values being the value for each subplot.
|
||||
"""
|
||||
# Set default values for attributes
|
||||
self.xlabel = xlabel
|
||||
self.ylabel = ylabel
|
||||
self.title = title
|
||||
self.xrange = xrange
|
||||
self.yrange = yrange
|
||||
self.palette = palette
|
||||
self.legend = legend
|
||||
self.plots = collections.defaultdict(list) # keys are groups
|
||||
self.grid = grid
|
||||
self.savepath = savepath
|
||||
self.custom_mpl_rc = None
|
||||
# Working attributes
|
||||
self.figure = None
|
||||
self.axes = None
|
||||
self.animation = {"type": False,
|
||||
"args": (), "kwargs": {},
|
||||
"persist": []}
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exception_type, exception_value, traceback):
|
||||
# Do not render the figure if an exception was raised
|
||||
if exception_type is None:
|
||||
if self.savepath is not None:
|
||||
self.save()
|
||||
else:
|
||||
self.show()
|
||||
|
||||
def save(self, *args, **kwargs):
|
||||
"""
|
||||
Render and save the figure. Also show the figure if possible.
|
||||
|
||||
.. note:: Signature is the same as the one from \
|
||||
``matplotlib.pyplot.savefig``. You should refer to its \
|
||||
documentation for lengthy details.
|
||||
|
||||
.. note:: Typical use is:
|
||||
>>> with replot.Figure() as figure: figure.save("SOME_FILENAME")
|
||||
|
||||
.. note:: If a ``savepath`` has been provided to the :class:`Figure` \
|
||||
object, you can call ``figure.save()`` without argument and \
|
||||
this path will be used.
|
||||
"""
|
||||
if len(args) == 0 and self.savepath is not None:
|
||||
args = (self.savepath,)
|
||||
|
||||
self.render()
|
||||
if self.figure is not None:
|
||||
self.figure.savefig(*args, **kwargs)
|
||||
else:
|
||||
raise exc.InvalidFigure("Invalid figure.")
|
||||
|
||||
def show(self):
|
||||
"""
|
||||
Render and show the :class:`Figure` object.
|
||||
"""
|
||||
self.render()
|
||||
if self.figure is not None:
|
||||
self.figure.show()
|
||||
else:
|
||||
raise exc.InvalidFigure("Invalid figure.")
|
||||
|
||||
def set_grid(self, grid_description=None,
|
||||
height=None, width=None, ignore_groups=False,
|
||||
auto=False):
|
||||
"""
|
||||
Apply a grid layout on the figure (subplots). Subplots are based on \
|
||||
defined groups (see ``group`` keyword to \
|
||||
``replot.Figure.plot``).
|
||||
|
||||
:param grid_description: A list of rows. Each row is a string \
|
||||
containing the groups to display (can be seen as ASCII art). \
|
||||
Can be a single string in case of a single row.
|
||||
:param height: An optional ``height`` for the grid, implies \
|
||||
``auto=True``.
|
||||
:param width: An optional ``height`` for the grid, implies \
|
||||
``auto=True``.
|
||||
:param ignore_groups: (optional, implies ``auto=True``) By default, \
|
||||
``set_grid`` will use groups to organize plots in different \
|
||||
subplots. If you want to put every plot in a different \
|
||||
subplot, regardless of their groups, you can set this \
|
||||
to ``True``.
|
||||
:param auto: Whether the grid should be guessed automatically from \
|
||||
groups or not (optional).
|
||||
|
||||
.. note:: Groups are a single unicode character. If a group does not \
|
||||
contain any plot, the resulting subplot will simply be empty.
|
||||
|
||||
.. note:: Note that if you do not include the default group in the \
|
||||
grid description, it will not be shown.
|
||||
|
||||
>>> with replot.Figure() as fig: fig.set_grid(["AAA",
|
||||
"BBC"
|
||||
"DEC"])
|
||||
"""
|
||||
# Handle auto gridifying
|
||||
if auto or height is not None or width is not None or ignore_groups:
|
||||
self._set_auto_grid(height, width, ignore_groups)
|
||||
return
|
||||
|
||||
# Default parameters
|
||||
if grid_description is None:
|
||||
grid_description = []
|
||||
elif grid_description is False:
|
||||
# Disable the grid and return
|
||||
self.grid = False
|
||||
return
|
||||
elif isinstance(grid_description, str):
|
||||
# If a single string is provided, enclose it in a list.
|
||||
grid_description = [grid_description]
|
||||
|
||||
# Check that grid is not empty
|
||||
if len(grid_description) == 0:
|
||||
raise exc.InvalidParameterError("Grid cannot be an empty list.")
|
||||
# Check that all rows have the same number of elements
|
||||
for row in grid_description:
|
||||
if len(row) != len(grid_description[0]):
|
||||
raise exc.InvalidParameterError(
|
||||
"All rows must have the same number of elements.")
|
||||
# Parse the ASCII art grid
|
||||
parsed_grid = grid_parser.parse_ascii(grid_description)
|
||||
if parsed_grid is None:
|
||||
# If grid is not valid, raise an exception
|
||||
raise exc.InvalidParameterError(
|
||||
"Invalid grid provided. You did not use rectangular areas " +
|
||||
"for each group.")
|
||||
# Set the grid
|
||||
self.grid = parsed_grid
|
||||
|
||||
def _set_auto_grid(self, height=None, width=None, ignore_groups=False):
|
||||
"""
|
||||
Apply an automatic grid on the figure, trying to fit best to the \
|
||||
number of plots.
|
||||
|
||||
.. note:: This method must be called after all the plots \
|
||||
have been added to the figure, or the grid will miss some \
|
||||
groups.
|
||||
|
||||
.. note:: The grid will be filled by the groups in lexicographic \
|
||||
order. Unassigned plots go to the last subplot.
|
||||
|
||||
:param height: An optional ``height`` for the grid.
|
||||
:param width: An optional ``height`` for the grid.
|
||||
:param ignore_groups: By default, ``set_grid`` will use groups to \
|
||||
organize plots in different subplots. If you want to put \
|
||||
every plot in a different subplot, regardless of their \
|
||||
groups, you can set this to ``True``.
|
||||
"""
|
||||
if ignore_groups:
|
||||
# If we want to ignore groups, we will start by creating a new
|
||||
# group for every existing plot
|
||||
existing_plots = []
|
||||
for group_ in self.plots:
|
||||
existing_plots.extend(self.plots[group_])
|
||||
self.plots = collections.defaultdict(list,
|
||||
{chr(i): [existing_plots[i]]
|
||||
for i in
|
||||
range(len(existing_plots))})
|
||||
|
||||
# Find the optimal layout
|
||||
nb_groups = len(self.plots)
|
||||
if height is None and width is not None:
|
||||
height = math.ceil(nb_groups / width)
|
||||
elif width is None and height is not None:
|
||||
width = math.ceil(nb_groups / height)
|
||||
else:
|
||||
height, width = _optimal_grid(nb_groups)
|
||||
|
||||
# Apply the layout
|
||||
groups = sorted([k
|
||||
for k in self.plots.keys()
|
||||
if k != _DEFAULT_GROUP and len(self.plots[k]) > 0])
|
||||
if len(self.plots[_DEFAULT_GROUP]) > 0:
|
||||
# Handle default group separately
|
||||
groups.append(_DEFAULT_GROUP)
|
||||
grid_description = ["".join(batch)
|
||||
for batch in tools.batch(groups, width)]
|
||||
self.set_grid(grid_description)
|
||||
|
||||
def plot(self, *args, **kwargs):
|
||||
"""
|
||||
Plot something on the :class:`Figure` object.
|
||||
|
||||
.. note:: This function expects ``args`` and ``kwargs`` to support
|
||||
every possible case. You can either pass it (see examples):
|
||||
|
||||
- A single argument, being a series of points or a function.
|
||||
- Two series of points representing X values and Y values \
|
||||
(standard :mod:`matplotlib` behavior).
|
||||
- Two arguments being a function and a list of points at which \
|
||||
it should be evaluated (X values).
|
||||
- Two arguments being a function and an interval represented by \
|
||||
a tuple of its bounds.
|
||||
|
||||
.. note:: ``kwargs`` arguments are passed to \
|
||||
``matplotlib.pyplot.plot``.
|
||||
|
||||
.. note:: You can use some :mod:`replot` specific keyword arguments:
|
||||
|
||||
- ``group`` which permits to group plots together, in \
|
||||
subplots (one unicode character maximum). ``group`` \
|
||||
keyword will not affect the render unless you state \
|
||||
:mod:`replot` to use subplots. Note that ``_`` is a \
|
||||
reserved group name which cannot be used.
|
||||
- ``line`` which can be set to ``True``/``False`` to plot \
|
||||
broken lines or discrete data series.
|
||||
- ``logscale`` which can be either ``log`` or ``loglog`` to use \
|
||||
such scales.
|
||||
- ``orthonormal`` (boolean) to force axis to be orthonormal.
|
||||
- ``xlim`` and ``ylim`` which are tuples of intervals on the \
|
||||
x and y axis.
|
||||
- ``invert`` (boolean) invert X and Y axis on the plot. Invert \
|
||||
the axes labels as well.
|
||||
- ``rotate`` (angle in degrees) rotate the plot by the angle in \
|
||||
degrees. Leave the labels untouched.
|
||||
- ``frame`` to specify a frame on which the plot should appear \
|
||||
when calling ``animate`` afterwards. Default behavior is \
|
||||
to increase the frame number between each plots. Frame \
|
||||
count starts at 0.
|
||||
|
||||
.. note:: Note that this API call considers list of tuples as \
|
||||
list of (x, y) coordinates to plot, contrary to standard \
|
||||
matplotlib API which considers it is two different plots.
|
||||
|
||||
>>> with replot.figure() as fig: fig.plot(np.sin, (-1, 1))
|
||||
>>> with replot.figure() as fig: fig.plot(np.sin, [-1, -0.9, …, 1])
|
||||
>>> with replot.figure() as fig: fig.plot([1, 2, 3], [4, 5, 6])
|
||||
>>> with replot.figure() as fig: fig.plot([1, 2, 3],
|
||||
[4, 5, 6], linewidth=2.0)
|
||||
>>> with replot.figure() as fig: fig.plot([1, 2, 3],
|
||||
[4, 5, 6], group="a")
|
||||
"""
|
||||
if len(args) == 0:
|
||||
raise exc.InvalidParameterError(
|
||||
"You should pass at least one argument to this function.")
|
||||
|
||||
# Extract custom kwargs (the ones from replot but not matplotlib) from
|
||||
# kwargs
|
||||
if kwargs is not None:
|
||||
kwargs, custom_kwargs = _handle_custom_plot_arguments(kwargs)
|
||||
else:
|
||||
custom_kwargs = {}
|
||||
|
||||
if hasattr(args[0], "__call__"):
|
||||
# We want to plot a function
|
||||
plot_ = _plot_function(args[0], *(args[1:]), **kwargs)
|
||||
else:
|
||||
# Else, it is a point series, and we just have to store it for
|
||||
# later plotting.
|
||||
if hasattr(args[0], "__iter__"):
|
||||
try:
|
||||
# If we pass it a list of tuples, consider it as a list of
|
||||
# (x, y) coordinates contrary to the standard matplotlib
|
||||
# behavior
|
||||
x_list, y_list = zip(*args[0])
|
||||
args = (list(x_list),
|
||||
list(y_list)) + args[1:]
|
||||
except (TypeError, StopIteration, AssertionError):
|
||||
pass
|
||||
plot_ = (args, kwargs)
|
||||
|
||||
# Keep track of the custom kwargs
|
||||
plot_ += (custom_kwargs,)
|
||||
|
||||
# Handle inversion
|
||||
if "invert" in custom_kwargs and custom_kwargs["invert"]:
|
||||
# Invert X and Y data
|
||||
plot_ = (
|
||||
(plot_[0][1], plot_[0][0]) + plot_[0][2:],
|
||||
plot_[1], plot_[2])
|
||||
# Handle rotation
|
||||
if "rotate" in custom_kwargs:
|
||||
# Rotate X, Y data
|
||||
# TODO: Not clean
|
||||
new_X_list = []
|
||||
new_Y_list = []
|
||||
for x, y in zip(plot_[0][0], plot_[0][1]):
|
||||
new_X_list.append(
|
||||
np.cos(custom_kwargs["rotate"]) * x +
|
||||
np.sin(custom_kwargs["rotate"]) * y)
|
||||
new_Y_list.append(
|
||||
-np.sin(custom_kwargs["rotate"]) * x +
|
||||
np.cos(custom_kwargs["rotate"]) * y)
|
||||
plot_ = (
|
||||
(new_X_list, new_Y_list) + plot_[0][2:],
|
||||
plot_[1], plot_[2])
|
||||
|
||||
# Add the plot to the correct group
|
||||
if "group" in custom_kwargs:
|
||||
group_ = custom_kwargs["group"]
|
||||
else:
|
||||
group_ = _DEFAULT_GROUP
|
||||
self.plots[group_].append(plot_)
|
||||
|
||||
# Automatically set the legend if label is found
|
||||
# (only do it if legend is not explicitly suppressed)
|
||||
if "label" in kwargs and self.legend is None:
|
||||
self.legend = True
|
||||
|
||||
def logplot(self, *args, **kwargs):
|
||||
"""
|
||||
Plot something on the :class:`Figure` object, in log scale.
|
||||
|
||||
.. note:: See :func:`replot.Figure.plot` for the full documentation.
|
||||
|
||||
>>> with replot.figure() as fig: fig.logplot(np.log, (-1, 1))
|
||||
"""
|
||||
kwargs["logscale"] = "log"
|
||||
self.plot(*args, **kwargs)
|
||||
|
||||
def loglogplot(self, *args, **kwargs):
|
||||
"""
|
||||
Plot something on the :class:`Figure` object, in log-log scale.
|
||||
|
||||
.. note:: See :func:`replot.Figure.plot` for the full documentation.
|
||||
|
||||
>>> with replot.figure() as fig: fig.logplot(np.log, (-1, 1))
|
||||
"""
|
||||
kwargs["logscale"] = "loglog"
|
||||
self.plot(*args, **kwargs)
|
||||
|
||||
def animate(self, *args, **kwargs):
|
||||
"""
|
||||
Create an animation.
|
||||
|
||||
You can either:
|
||||
- pass it a function TODO
|
||||
- use it directly without arguments to create an animation from \
|
||||
the previously plot commands.
|
||||
"""
|
||||
# TODO
|
||||
self.animation["type"] = "gif"
|
||||
self.animation["args"] = args
|
||||
self.animation["kwargs"] = kwargs
|
||||
|
||||
def _legend(self, axis, overload_legend=None):
|
||||
"""
|
||||
Helper function to handle ``legend`` attribute. It places the legend \
|
||||
correctly depending on attributes and required plots.
|
||||
|
||||
:param axis: The :mod:`matplotlib` axis to put the legend on.
|
||||
:param overload_legend: An optional legend specification to use \
|
||||
instead of the ``legend`` attribute.
|
||||
"""
|
||||
if overload_legend is None:
|
||||
overload_legend = self.legend
|
||||
|
||||
# If no legend is required, just pass
|
||||
if overload_legend is None or overload_legend is False:
|
||||
return
|
||||
|
||||
if overload_legend is True:
|
||||
# If there should be a legend, but no location provided, put it at
|
||||
# best location.
|
||||
location = "best"
|
||||
else:
|
||||
location = overload_legend
|
||||
# Create aliases for "upper" / "top" and "lower" / "bottom"
|
||||
location.replace("top ", "upper ")
|
||||
location.replace("bottom ", "lower ")
|
||||
# Avoid warning if no labels were given for plots
|
||||
nb_labelled_plots = sum(["label" in plt[1]
|
||||
for group in self.plots.values()
|
||||
for plt in group])
|
||||
if nb_labelled_plots > 0:
|
||||
# Add legend
|
||||
axis.legend(loc=location)
|
||||
|
||||
def _grid(self):
|
||||
"""
|
||||
Create subplots according to the grid description.
|
||||
|
||||
:returns: A tuple containing the figure object as first element, and \
|
||||
a dict mapping the symbols of the groups to matplotlib axes \
|
||||
as second element.
|
||||
"""
|
||||
if self.grid is False:
|
||||
# If grid is disabled, we plot every group in the same sublot.
|
||||
axes = {}
|
||||
figure, axis = plt.subplots()
|
||||
# Set the palette for the subplot
|
||||
axis.set_prop_cycle(
|
||||
self._build_cycler_palette(sum([len(i)
|
||||
for i in self.plots.values()]))
|
||||
)
|
||||
# Set the axis for every subplot
|
||||
for subplot in self.plots:
|
||||
axes[subplot] = axis
|
||||
|
||||
# Set attributes
|
||||
self.figure = figure
|
||||
self.axes = axes
|
||||
# Return
|
||||
return
|
||||
elif self.grid is None:
|
||||
# If no grid is provided, create an auto grid for the figure.
|
||||
self._set_auto_grid()
|
||||
|
||||
# Axes is a dict associating symbols to matplotlib axes
|
||||
axes = {}
|
||||
figure = plt.figure()
|
||||
# Build all the axes
|
||||
grid_size = (self.grid["height"], self.grid["width"])
|
||||
for subplot in self.grid["grid"]:
|
||||
position, symbol, (rowspan, colspan) = subplot
|
||||
axes[symbol] = plt.subplot2grid(grid_size,
|
||||
position,
|
||||
colspan=colspan,
|
||||
rowspan=rowspan)
|
||||
# Set the palette for the subplot
|
||||
axes[symbol].set_prop_cycle(
|
||||
self._build_cycler_palette(len(self.plots[symbol])))
|
||||
if _DEFAULT_GROUP not in axes:
|
||||
# Set the default group axis to None if it is not in the grid
|
||||
axes[_DEFAULT_GROUP] = None
|
||||
|
||||
# Set attributes
|
||||
self.figure = figure
|
||||
self.axes = axes
|
||||
|
||||
def _set_axes_properties(self, axis, group_):
|
||||
is_inverted_axis = len(
|
||||
[i
|
||||
for i in self.plots[group_]
|
||||
if "invert" in i[2] and i[2]["invert"]]
|
||||
) > 0
|
||||
# Set xlabel
|
||||
if isinstance(self.xlabel, dict):
|
||||
try:
|
||||
if is_inverted_axis:
|
||||
# Handle axis inversion
|
||||
axis.set_ylabel(self.xlabel[group_])
|
||||
else:
|
||||
axis.set_xlabel(self.xlabel[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, pass it
|
||||
pass
|
||||
else:
|
||||
if is_inverted_axis:
|
||||
# Handle axis inversion
|
||||
axis.set_ylabel(self.xlabel)
|
||||
else:
|
||||
axis.set_xlabel(self.xlabel)
|
||||
# Set ylabel
|
||||
if isinstance(self.ylabel, dict):
|
||||
try:
|
||||
if is_inverted_axis:
|
||||
# Handle axis inversion
|
||||
axis.set_xlabel(self.ylabel[group_])
|
||||
else:
|
||||
axis.set_ylabel(self.ylabel[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, pass it
|
||||
pass
|
||||
else:
|
||||
if is_inverted_axis:
|
||||
# Handle axis inversion
|
||||
axis.set_xlabel(self.ylabel)
|
||||
else:
|
||||
axis.set_ylabel(self.ylabel)
|
||||
# Set title
|
||||
if isinstance(self.title, dict):
|
||||
try:
|
||||
axis.set_ylabel(self.title[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, pass it
|
||||
pass
|
||||
else:
|
||||
axis.set_title(self.title)
|
||||
# Set legend
|
||||
if isinstance(self.legend, dict):
|
||||
try:
|
||||
self._legend(axis, overload_legend=self.legend[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, use default argument
|
||||
# That is put a legend except if no plots on this axis.
|
||||
self._legend(axis, overload_legend=True)
|
||||
else:
|
||||
self._legend(axis)
|
||||
# Set xrange
|
||||
if isinstance(self.xrange, dict):
|
||||
try:
|
||||
if self.xrange[group_] is not None:
|
||||
axis.set_xlim(*self.xrange[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, pass it
|
||||
pass
|
||||
else:
|
||||
if self.xrange is not None:
|
||||
axis.set_xlim(*self.xrange)
|
||||
# Set yrange
|
||||
if isinstance(self.yrange, dict):
|
||||
try:
|
||||
if self.yrange[group_] is not None:
|
||||
axis.set_ylim(*self.yrange[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, pass it
|
||||
pass
|
||||
else:
|
||||
if self.yrange is not None:
|
||||
axis.set_ylim(*self.yrange)
|
||||
|
||||
def _build_cycler_palette(self, n):
|
||||
"""
|
||||
Build a cycler palette for the selected subplot.
|
||||
|
||||
:param n: number of colors in the palette.
|
||||
:returns: a cycler object for the palette.
|
||||
"""
|
||||
if hasattr(self.palette, "__call__"):
|
||||
return cycler.cycler("color", self.palette(n))
|
||||
else:
|
||||
return cycler.cycler("color", self.palette)
|
||||
|
||||
def render(self):
|
||||
"""
|
||||
Actually render the figure.
|
||||
|
||||
:returns: A :mod:`matplotlib` figure.
|
||||
"""
|
||||
# Use custom matplotlib context
|
||||
with mpl_custom_rc_context(rc=self.custom_mpl_rc):
|
||||
if self.figure is None or self.axes is None:
|
||||
# Create figure if necessary
|
||||
self._grid()
|
||||
|
||||
if self.animation["type"] is False:
|
||||
self._render_no_animation()
|
||||
elif self.animation["type"] == "gif":
|
||||
self._render_gif_animation()
|
||||
elif self.animation["type"] == "animation":
|
||||
# TODO
|
||||
return None
|
||||
else:
|
||||
return None
|
||||
self.figure.tight_layout(pad=1)
|
||||
|
||||
def _render_gif_animation(self):
|
||||
"""
|
||||
Handle the render of a GIF-like animation, cycling through the plots.
|
||||
|
||||
:returns: A :mod:`matplotlib` figure.
|
||||
"""
|
||||
# Init
|
||||
# TODO
|
||||
self.axes[_DEFAULT_GROUP].set_xlim((-2, 2))
|
||||
self.axes[_DEFAULT_GROUP].set_ylim((-2, 2))
|
||||
line, = self.axes[_DEFAULT_GROUP].plot([], [])
|
||||
# Define an animation function (closure)
|
||||
def animate(i):
|
||||
# TODO
|
||||
x = np.linspace(0, 2, 1000)
|
||||
y = np.sin(2 * np.pi * (x - 0.01 * i))
|
||||
line.set_data(x, y)
|
||||
return line,
|
||||
# Set default kwargs
|
||||
default_args = (self.figure, animate)
|
||||
default_kwargs = {
|
||||
"frames": 200,
|
||||
"interval": 20,
|
||||
"blit": True,
|
||||
}
|
||||
# Update with overloaded arguments
|
||||
default_args = default_args + self.animation["args"]
|
||||
default_kwargs.update(self.animation["kwargs"])
|
||||
# Keep track of animation object, as it has to persist
|
||||
self.animation["persist"] = [
|
||||
animation.FuncAnimation(*default_args, **default_kwargs)]
|
||||
return self.figure
|
||||
|
||||
def _render_no_animation(self):
|
||||
"""
|
||||
Handle the render of the figure when no animation is used.
|
||||
|
||||
:returns: A :mod:`matplotlib` figure.
|
||||
"""
|
||||
# Add plots
|
||||
for group_ in self.plots:
|
||||
# Get the axis corresponding to current group
|
||||
try:
|
||||
axis = self.axes[group_]
|
||||
except KeyError:
|
||||
# If not found, plot in the default group
|
||||
axis = self.axes[_DEFAULT_GROUP]
|
||||
# Skip this plot if the axis is None
|
||||
if axis is None:
|
||||
continue
|
||||
# Plot
|
||||
for plot_ in self.plots[group_]:
|
||||
tmp_plots = axis.plot(*(plot_[0]), **(plot_[1]))
|
||||
# Handle custom kwargs at plotting time
|
||||
if "logscale" in plot_[2]:
|
||||
if plot_[2]["logscale"] == "log":
|
||||
axis.set_xscale("log")
|
||||
elif plot_[2]["logscale"] == "loglog":
|
||||
axis.set_xscale("log")
|
||||
axis.set_yscale("log")
|
||||
if "orthonormal" in plot_[2] and plot_[2]["orthonormal"]:
|
||||
axis.set_aspect("equal")
|
||||
if "xlim" in plot_[2]:
|
||||
axis.set_xlim(*plot_[2]["xlim"])
|
||||
if "ylim" in plot_[2]:
|
||||
axis.set_ylim(*plot_[2]["ylim"])
|
||||
# Do not clip line at the axes boundaries to prevent
|
||||
# extremas from being cropped.
|
||||
for tmp_plot in tmp_plots:
|
||||
tmp_plot.set_clip_on(False)
|
||||
# Set ax properties
|
||||
self._set_axes_properties(axis, group_)
|
||||
return self.figure
|
||||
__all__ = ["plot", "Figure"]
|
||||
|
||||
|
||||
def plot(data, **kwargs):
|
||||
@ -753,243 +47,3 @@ def plot(data, **kwargs):
|
||||
else:
|
||||
figure.plot(plot_)
|
||||
figure.show()
|
||||
|
||||
|
||||
def _mpl_custom_rc_scaling():
|
||||
"""
|
||||
Scale the elements of the figure to get a better rendering.
|
||||
|
||||
Settings borrowed from
|
||||
[Seaborn](https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py#L344).
|
||||
|
||||
:returns: a :mod:`matplotlib` ``rcParams``-like dict.
|
||||
"""
|
||||
rc_params = {
|
||||
"figure.figsize": np.array([8, 5.5]),
|
||||
# Set misc font sizes
|
||||
"font.size": 12,
|
||||
"axes.labelsize": 11,
|
||||
"axes.titlesize": 12,
|
||||
"xtick.labelsize": 10,
|
||||
"ytick.labelsize": 10,
|
||||
"legend.fontsize": 10,
|
||||
# Set misc linewidth
|
||||
"grid.linewidth": 1,
|
||||
"lines.linewidth": 1.75,
|
||||
"patch.linewidth": .3,
|
||||
"lines.markersize": 7,
|
||||
"lines.markeredgewidth": 1.75,
|
||||
# Disable ticks
|
||||
"xtick.major.width": 0,
|
||||
"ytick.major.width": 0,
|
||||
"xtick.minor.width": 0,
|
||||
"ytick.minor.width": 0,
|
||||
# Set ticks padding
|
||||
"xtick.major.pad": 7,
|
||||
"ytick.major.pad": 7,
|
||||
}
|
||||
return rc_params
|
||||
|
||||
|
||||
def _mpl_custom_rc_axes_style():
|
||||
"""
|
||||
Set the style of the plot and the axes. Things like set a grid etc.
|
||||
|
||||
Settings borrowed from
|
||||
[Seaborn](https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py#L344).
|
||||
|
||||
:returns: a :mod:`matplotlib` ``rcParams``-like dict.
|
||||
"""
|
||||
# Use dark gray instead of black for better readability on screen
|
||||
dark_gray = ".15"
|
||||
rc_params = {
|
||||
# Colors
|
||||
"figure.facecolor": "white",
|
||||
"text.color": dark_gray,
|
||||
# Legend
|
||||
"legend.frameon": False, # No frame around legend
|
||||
"legend.numpoints": 1,
|
||||
"legend.scatterpoints": 1,
|
||||
# Ticks
|
||||
"xtick.direction": "out",
|
||||
"ytick.direction": "out",
|
||||
"xtick.color": dark_gray,
|
||||
"ytick.color": dark_gray,
|
||||
"lines.solid_capstyle": "round",
|
||||
# Axes
|
||||
"axes.axisbelow": True,
|
||||
"axes.linewidth": 0,
|
||||
"axes.labelcolor": dark_gray,
|
||||
"axes.grid": True,
|
||||
"axes.facecolor": "EAEAF2",
|
||||
"axes.edgecolor": "white",
|
||||
# Grid
|
||||
"grid.linestyle": "-",
|
||||
"grid.color": "white",
|
||||
# Image
|
||||
"image.cmap": "Greys"
|
||||
}
|
||||
return rc_params
|
||||
|
||||
|
||||
def mpl_custom_rc_context(rc=None):
|
||||
"""
|
||||
Overload ``matplotlib.rcParams`` to enable advanced features if \
|
||||
available. In particular, use LaTeX if available.
|
||||
|
||||
:param rc: An optional dict to overload some :mod:`matplotlib` rc params.
|
||||
:returns: A ``matplotlib.rc_context`` object to use in a ``with`` \
|
||||
statement.
|
||||
"""
|
||||
custom_rc = {}
|
||||
# Add LaTeX in rc if available
|
||||
if(shutil.which("latex") is not None and
|
||||
shutil.which("gs") is not None and
|
||||
shutil.which("dvipng") is not None):
|
||||
# LateX dependencies are all available
|
||||
custom_rc["text.usetex"] = True
|
||||
custom_rc["text.latex.unicode"] = True
|
||||
# Use LaTeX default font family
|
||||
# See https://stackoverflow.com/questions/17958485/matplotlib-not-using-latex-font-while-text-usetex-true
|
||||
custom_rc["font.family"] = "serif"
|
||||
custom_rc["font.serif"] = "cm"
|
||||
# Scale everything
|
||||
custom_rc.update(_mpl_custom_rc_scaling())
|
||||
# Set axes style
|
||||
custom_rc.update(_mpl_custom_rc_axes_style())
|
||||
# Overload if necessary
|
||||
if rc is not None:
|
||||
custom_rc.update(rc)
|
||||
# Return a context object
|
||||
return plt.rc_context(rc=custom_rc)
|
||||
|
||||
|
||||
def _handle_custom_plot_arguments(kwargs):
|
||||
"""
|
||||
This method handles custom keyword arguments from plot in \
|
||||
:mod:`replot` which are not in :mod:`matplotlib` function.
|
||||
|
||||
:param kwargs: A dictionary of keyword arguments to handle.
|
||||
:return: A tuple of :mod:`matplotlib` compatible keyword arguments \
|
||||
and of extra :mod:`replot` keyword arguments, both returned \
|
||||
as ``dict``.
|
||||
"""
|
||||
custom_kwargs = {}
|
||||
# Handle "group" argument
|
||||
if "group" in kwargs:
|
||||
if len(kwargs["group"]) > 1:
|
||||
raise exc.InvalidParameterError(
|
||||
"Group name cannot be longer than one unicode character.")
|
||||
elif kwargs["group"] == _DEFAULT_GROUP:
|
||||
raise exc.InvalidParameterError(
|
||||
"'%s' is a reserved group name." % (_DEFAULT_GROUP,))
|
||||
custom_kwargs["group"] = kwargs["group"]
|
||||
del kwargs["group"]
|
||||
# Handle "line" argument
|
||||
if "line" in kwargs:
|
||||
if not kwargs["line"]: # If should not draw lines, set kwargs for it
|
||||
kwargs["linestyle"] = "None"
|
||||
kwargs["marker"] = "x"
|
||||
del kwargs["line"]
|
||||
# Handle "logscale" argument
|
||||
if "logscale" in kwargs:
|
||||
custom_kwargs["logscale"] = kwargs["logscale"]
|
||||
del kwargs["logscale"]
|
||||
# Handle "orthonormal" argument
|
||||
if "orthonormal" in kwargs:
|
||||
custom_kwargs["orthonormal"] = kwargs["orthonormal"]
|
||||
del kwargs["orthonormal"]
|
||||
# Handle "xlim" argument
|
||||
if "xlim" in kwargs:
|
||||
custom_kwargs["xlim"] = kwargs["xlim"]
|
||||
del kwargs["xlim"]
|
||||
# Handle "ylim" argument
|
||||
if "ylim" in kwargs:
|
||||
custom_kwargs["ylim"] = kwargs["ylim"]
|
||||
del kwargs["ylim"]
|
||||
# Handle "invert" argument
|
||||
if "invert" in kwargs:
|
||||
custom_kwargs["invert"] = kwargs["invert"]
|
||||
del kwargs["invert"]
|
||||
# Handle "rotate" argument
|
||||
if "rotate" in kwargs:
|
||||
# Convert angle to radians
|
||||
custom_kwargs["rotate"] = kwargs["rotate"] * np.pi / 180
|
||||
del kwargs["rotate"]
|
||||
# Handle "frame" argument
|
||||
if "frame" in kwargs:
|
||||
custom_kwargs["frame"] = kwargs["frame"]
|
||||
del kwargs["frame"]
|
||||
else:
|
||||
custom_kwargs["frame"] = 0
|
||||
return (kwargs, custom_kwargs)
|
||||
|
||||
|
||||
def _plot_function(data, *args, **kwargs):
|
||||
"""
|
||||
Helper function to handle plotting of unevaluated functions (trying \
|
||||
to evaluate it nicely and rendering the plot).
|
||||
|
||||
:param data: The function to plot.
|
||||
:returns: A tuple of ``(args, kwargs)`` representing the plot.
|
||||
|
||||
.. seealso:: The documentation of the ``replot.Figure.plot`` method.
|
||||
|
||||
.. note:: ``args`` is used to handle the interval or point series on \
|
||||
which the function should be evaluated. ``kwargs`` are passed \
|
||||
directly to ``matplotlib.pyplot.plot`.
|
||||
"""
|
||||
if len(args) == 0:
|
||||
# If no interval specified, raise an issue
|
||||
raise exc.InvalidParameterError(
|
||||
"You should pass a plotting interval to the plot command.")
|
||||
elif isinstance(args[0], tuple):
|
||||
# Interval specified, use it and adaptive plotting
|
||||
x_values, y_values = adaptive_sampling.sample_function(
|
||||
data,
|
||||
args[0],
|
||||
tol=1e-3)
|
||||
elif isinstance(args[0], (list, np.ndarray)):
|
||||
# List of points specified, use them and compute values of the
|
||||
# function
|
||||
x_values = args[0]
|
||||
y_values = [data(i) for i in x_values]
|
||||
else:
|
||||
raise exc.InvalidParameterError(
|
||||
"Second parameter in plot command should be a tuple " +
|
||||
"specifying plotting interval.")
|
||||
return ((x_values, y_values) + args[1:], kwargs)
|
||||
|
||||
|
||||
def _optimal_grid(nb_items):
|
||||
"""
|
||||
(Naive) attempt to find an optimal grid layout for N elements.
|
||||
|
||||
:param nb_items: The number of square elements to put on the grid.
|
||||
:returns: A tuple ``(height, width)`` containing the number of rows and \
|
||||
the number of cols of the resulting grid.
|
||||
|
||||
>>> _optimal_grid(2)
|
||||
(1, 2)
|
||||
|
||||
>>> _optimal_grid(3)
|
||||
(1, 3)
|
||||
|
||||
>>> _optimal_grid(4)
|
||||
(2, 2)
|
||||
"""
|
||||
# Compute first possibility
|
||||
height1 = math.floor(math.sqrt(nb_items))
|
||||
width1 = math.ceil(nb_items / height1)
|
||||
|
||||
# Compute second possibility
|
||||
width2 = math.ceil(math.sqrt(nb_items))
|
||||
height2 = math.ceil(nb_items / width2)
|
||||
|
||||
# Minimize the product of height and width
|
||||
if height1 * width1 < height2 * width2:
|
||||
height, width = height1, width1
|
||||
else:
|
||||
height, width = height2, width2
|
||||
|
||||
return (height, width)
|
||||
|
8
replot/constants.py
Normal file
8
replot/constants.py
Normal file
@ -0,0 +1,8 @@
|
||||
"""
|
||||
Useful constants for :mod:`replot`.
|
||||
"""
|
||||
|
||||
__VERSION__ = "0.0.1"
|
||||
|
||||
# Default subplot group (reserved name)
|
||||
DEFAULT_GROUP = "_"
|
@ -1,5 +1,5 @@
|
||||
"""
|
||||
TODO
|
||||
Exception classes used in :mod:`replot`.
|
||||
"""
|
||||
|
||||
|
||||
|
621
replot/figure.py
Normal file
621
replot/figure.py
Normal file
@ -0,0 +1,621 @@
|
||||
"""
|
||||
"""
|
||||
import collections
|
||||
import math
|
||||
import os
|
||||
|
||||
import matplotlib as mpl
|
||||
# Use "agg" backend automatically if no display is available.
|
||||
try:
|
||||
os.environ["DISPLAY"]
|
||||
except KeyError:
|
||||
mpl.use("agg")
|
||||
import matplotlib.animation as animation
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from replot import constants
|
||||
from replot import exceptions as exc
|
||||
from replot import tools
|
||||
from replot.grid import layout
|
||||
from replot.grid import parser as grid_parser
|
||||
from replot.helpers import custom_kwargs as custom_kwargs_parser
|
||||
from replot.helpers import custom_mpl
|
||||
from replot.helpers import palette as rpalette
|
||||
from replot.helpers import plot as plot_helpers
|
||||
from replot.helpers import render as render_helpers
|
||||
|
||||
|
||||
class Figure():
|
||||
"""
|
||||
The main class from :mod:`replot`, representing a figure. Can be used \
|
||||
directly or in a ``with`` statement.
|
||||
"""
|
||||
def __init__(self,
|
||||
xlabel="", ylabel="", title="",
|
||||
xrange=None, yrange=None,
|
||||
palette=rpalette.default,
|
||||
legend=None, savepath=None, grid=None,
|
||||
custom_mpl_rc=None):
|
||||
"""
|
||||
Build a :class:`Figure` object.
|
||||
|
||||
:param xlabel: Label for the X axis (optional).
|
||||
:param ylabel: Label for the Z axis (optional).
|
||||
:param title: Title of the figure (optional).
|
||||
:param xrange: Range of the X axis (optional), as a tuple \
|
||||
representing the interval.
|
||||
:param yrange: Range of the Y axis (optional), as a tuple \
|
||||
representing the interval.
|
||||
:param palette: Color palette to use (optional). Defaults to a safe \
|
||||
palette with compatibility with colorblindness and black and \
|
||||
white printing.
|
||||
:type palette: Either a list of colors (as RGB tuples) or a function \
|
||||
to call with number of plots as parameter and which returns a \
|
||||
list of colors (as RGB tuples). You can also pass a Seaborn \
|
||||
palette directly, or use a Palettable Palette.mpl_colors.
|
||||
:param legend: Whether to use a legend or not (optional). Defaults to \
|
||||
no legend, except if labels are found on provided plots. \
|
||||
``False`` to disable completely. ``None`` for default \
|
||||
behavior. A string indicating position (:mod:`matplotlib` \
|
||||
format) to put a legend. ``True`` is a synonym for ``best`` \
|
||||
position.
|
||||
:param savepath: A path to save the image to (optional). If set, \
|
||||
the image will be saved on exiting a `with` statement.
|
||||
:param grid: A dict containing the width and height of the grid, and \
|
||||
a description of the grid as a list of subplots. Each subplot \
|
||||
is a tuple of \
|
||||
``((y_position, x_position), symbol, (rowspan, colspan))``. \
|
||||
No check for grid validity is being made. You can set it to \
|
||||
``False`` to disable it completely.
|
||||
:param custom_mpl_rc: An optional dict to overload some \
|
||||
:mod:`matplotlib` rc params.
|
||||
|
||||
.. note:: If you use group plotting, ``xlabel``, ``ylabel``, \
|
||||
``legend``, ``xrange``, ``yrange`` and ``zrange`` will be \
|
||||
set uniformly for every subplot. If you wish to set \
|
||||
different properties for every subplots, you \
|
||||
should pass a dict for these properties, keys being the \
|
||||
group symbols and values being the value for each subplot.
|
||||
"""
|
||||
# Set default values for attributes
|
||||
self.xlabel = xlabel
|
||||
self.ylabel = ylabel
|
||||
self.title = title
|
||||
self.xrange = xrange
|
||||
self.yrange = yrange
|
||||
self.palette = palette
|
||||
self.legend = legend
|
||||
self.plots = collections.defaultdict(list) # keys are groups
|
||||
self.grid = grid
|
||||
self.savepath = savepath
|
||||
self.custom_mpl_rc = custom_mpl_rc
|
||||
# Working attributes
|
||||
self.figure = None
|
||||
self.axes = None
|
||||
self.animation = {"type": False,
|
||||
"args": (), "kwargs": {},
|
||||
"persist": []}
|
||||
|
||||
def __enter__(self): # Allow use in a with statement
|
||||
return self
|
||||
|
||||
def __exit__(self, exception_type, exception_value, traceback):
|
||||
# Do not render the figure if an exception was raised
|
||||
if exception_type is None:
|
||||
if self.savepath is not None:
|
||||
self.save()
|
||||
else:
|
||||
self.show()
|
||||
|
||||
def save(self, *args, **kwargs):
|
||||
"""
|
||||
Render and save the figure. Also show the figure if possible.
|
||||
|
||||
.. note:: Signature is the same as the one from \
|
||||
``matplotlib.pyplot.savefig``. You should refer to its \
|
||||
documentation for lengthy details.
|
||||
|
||||
.. note:: If a ``savepath`` has been provided to the :class:`Figure` \
|
||||
object, you can call ``figure.save()`` without argument and \
|
||||
this path will be used.
|
||||
|
||||
>>> with replot.Figure() as figure: figure.save("SOME_FILENAME")
|
||||
>>> with replot.Figure(savepath="SOME_FILENAME") as figure: pass
|
||||
"""
|
||||
if len(args) == 0 and self.savepath is not None:
|
||||
args = (self.savepath,)
|
||||
|
||||
self.render()
|
||||
if self.figure is not None:
|
||||
self.figure.savefig(*args, **kwargs)
|
||||
else:
|
||||
raise exc.InvalidFigure("Invalid figure.")
|
||||
|
||||
def show(self):
|
||||
"""
|
||||
Render and show the :class:`Figure` object.
|
||||
"""
|
||||
self.render()
|
||||
if self.figure is not None:
|
||||
self.figure.show()
|
||||
else:
|
||||
raise exc.InvalidFigure("Invalid figure.")
|
||||
|
||||
def render(self):
|
||||
"""
|
||||
Actually render the figure. Update ``self.figure`` attribute, but do \
|
||||
not show or save it.
|
||||
|
||||
:returns: None.
|
||||
"""
|
||||
# Use custom matplotlib context
|
||||
with plt.rc_context(rc=custom_mpl.custom_rc(rc=self.custom_mpl_rc)):
|
||||
if self.figure is None or self.axes is None:
|
||||
# Create figure if necessary
|
||||
self._render_grid()
|
||||
|
||||
# Render depending on animation type
|
||||
if self.animation["type"] is False:
|
||||
self._render_no_animation()
|
||||
elif self.animation["type"] == "gif":
|
||||
self._render_gif_animation()
|
||||
elif self.animation["type"] == "animation":
|
||||
# TODO
|
||||
return None
|
||||
else:
|
||||
return None
|
||||
# Use tight_layout to optimize layout, use custom padding
|
||||
self.figure.tight_layout(pad=1)
|
||||
|
||||
def set_grid(self, grid_description=None,
|
||||
height=None, width=None, ignore_groups=False,
|
||||
auto=None):
|
||||
"""
|
||||
Apply a grid layout on the figure (subplots). Subplots are based on \
|
||||
defined groups (see ``group`` keyword to \
|
||||
``replot.Figure.plot``).
|
||||
|
||||
:param grid_description: A list of rows. Each row is a string \
|
||||
containing the groups to display (can be seen as ASCII art). \
|
||||
Can be a single string in case of a single row.
|
||||
:param height: An optional ``height`` for the grid, implies \
|
||||
``auto=True``.
|
||||
:param width: An optional ``height`` for the grid, implies \
|
||||
``auto=True``.
|
||||
:param ignore_groups: (optional, implies ``auto=True``) By default, \
|
||||
``set_grid`` will use groups to organize plots in different \
|
||||
subplots. If you want to put every plot in a different \
|
||||
subplot, regardless of their groups, you can set this \
|
||||
to ``True``.
|
||||
:param auto: Whether the grid should be guessed automatically from \
|
||||
groups or not (optional).
|
||||
:returns: None.
|
||||
|
||||
.. note:: Groups are a single unicode character. If a group does not \
|
||||
contain any plot, the resulting subplot will simply be empty.
|
||||
|
||||
.. note:: Note that if you do not include the default group in the \
|
||||
grid description, it will not be shown.
|
||||
|
||||
>>> with replot.Figure() as fig: fig.set_grid(["AAA",
|
||||
"BBC"
|
||||
"DEC"])
|
||||
"""
|
||||
# Handle incompatible arguments
|
||||
if((height is not None or width is not None or ignore_groups) and
|
||||
auto is False):
|
||||
raise exc.InvalidParameterError(
|
||||
"auto=False and height/width/ignore_groups arguments are " +
|
||||
"not compatible.")
|
||||
# Handle auto gridifying
|
||||
if auto is None:
|
||||
auto = False
|
||||
if auto or height is not None or width is not None or ignore_groups:
|
||||
self._set_auto_grid(height, width, ignore_groups)
|
||||
return
|
||||
|
||||
if grid_description is False:
|
||||
# Disable the grid and return
|
||||
self.grid = False
|
||||
return
|
||||
elif isinstance(grid_description, str):
|
||||
# If a single string is provided, enclose it in a list.
|
||||
grid_description = [grid_description]
|
||||
# Check that grid is not empty
|
||||
if grid_description is None or len(grid_description) == 0:
|
||||
raise exc.InvalidParameterError("Grid cannot be an empty list.")
|
||||
# Check that all rows have the same number of elements
|
||||
for row in grid_description:
|
||||
if len(row) != len(grid_description[0]):
|
||||
raise exc.InvalidParameterError(
|
||||
"All rows must have the same number of elements.")
|
||||
# Parse the ASCII art grid
|
||||
parsed_grid = grid_parser.parse_ascii(grid_description)
|
||||
if parsed_grid is None:
|
||||
# If grid is not valid, raise an exception
|
||||
raise exc.InvalidParameterError(
|
||||
"Invalid grid provided. You did not use rectangular areas " +
|
||||
"for each group.")
|
||||
# Set the grid
|
||||
self.grid = parsed_grid
|
||||
|
||||
def plot(self, *args, **kwargs):
|
||||
"""
|
||||
Plot something on the :class:`Figure` object.
|
||||
|
||||
.. note:: This function expects ``args`` and ``kwargs`` to support
|
||||
every possible case. You can either pass it (see examples):
|
||||
|
||||
- A single argument, being a series of points or a function.
|
||||
- Two series of points representing X values and Y values \
|
||||
(standard :mod:`matplotlib` behavior).
|
||||
- Two arguments being a function and a list of points at which \
|
||||
it should be evaluated (X values).
|
||||
- Two arguments being a function and an interval represented by \
|
||||
a tuple of its bounds.
|
||||
|
||||
.. note:: ``kwargs`` arguments are passed to \
|
||||
``matplotlib.pyplot.plot``.
|
||||
|
||||
.. note:: You can use some :mod:`replot` specific keyword arguments:
|
||||
|
||||
- ``group`` which permits to group plots together, in \
|
||||
subplots (one unicode character maximum). ``group`` \
|
||||
keyword will not affect the render unless you state \
|
||||
:mod:`replot` to use subplots. Note that ``_`` is a \
|
||||
reserved group name which cannot be used.
|
||||
- ``line`` which can be set to ``True``/``False`` to plot \
|
||||
broken lines or discrete data series.
|
||||
- ``logscale`` which can be either ``log`` or ``loglog`` to use \
|
||||
such scales.
|
||||
- ``orthonormal`` (boolean) to force axis to be orthonormal.
|
||||
- ``xlim`` and ``ylim`` which are tuples of intervals on the \
|
||||
x and y axis.
|
||||
- ``invert`` (boolean) invert X and Y axis on the plot. Invert \
|
||||
the axes labels as well.
|
||||
- ``rotate`` (angle in degrees) rotate the plot by the angle in \
|
||||
degrees. Leave the labels untouched.
|
||||
- ``frame`` to specify a frame on which the plot should appear \
|
||||
when calling ``animate`` afterwards. Default behavior is \
|
||||
to increase the frame number between each plots. Frame \
|
||||
count starts at 0.
|
||||
|
||||
.. note:: Note that this API call considers list of tuples as \
|
||||
list of (x, y) coordinates to plot, contrary to standard \
|
||||
matplotlib API which considers it is two different plots.
|
||||
|
||||
>>> with replot.figure() as fig: fig.plot(np.sin, (-1, 1))
|
||||
>>> with replot.figure() as fig: fig.plot(np.sin, [-1, -0.9, …, 1])
|
||||
>>> with replot.figure() as fig: fig.plot([1, 2, 3], [4, 5, 6])
|
||||
>>> with replot.figure() as fig: fig.plot([1, 2, 3],
|
||||
[4, 5, 6], linewidth=2.0)
|
||||
>>> with replot.figure() as fig: fig.plot([1, 2, 3],
|
||||
[4, 5, 6], group="a")
|
||||
"""
|
||||
if len(args) == 0:
|
||||
raise exc.InvalidParameterError(
|
||||
"You should pass at least one argument to this function.")
|
||||
|
||||
# Extract custom kwargs (the ones from replot but not matplotlib) from
|
||||
# kwargs
|
||||
kwargs, custom_kwargs = custom_kwargs_parser.parse(kwargs)
|
||||
|
||||
if hasattr(args[0], "__call__"):
|
||||
# We want to plot a function
|
||||
plot_ = plot_helpers.plot_function(args[0], *(args[1:]), **kwargs)
|
||||
else:
|
||||
# Else, it is a point series, and we just have to store it for
|
||||
# later plotting.
|
||||
if hasattr(args[0], "__iter__"):
|
||||
try:
|
||||
# If we pass it a list of tuples, consider it as a list of
|
||||
# (x, y) coordinates contrary to the standard matplotlib
|
||||
# behavior
|
||||
x_list, y_list = zip(*args[0])
|
||||
args = (list(x_list),
|
||||
list(y_list)) + args[1:]
|
||||
except (TypeError, StopIteration, AssertionError):
|
||||
pass
|
||||
plot_ = (args, kwargs)
|
||||
|
||||
# Apply custom kwargs on plot_
|
||||
plot_ = custom_kwargs_parser.edit_plot_command(plot_, custom_kwargs)
|
||||
|
||||
# Add the plot to the correct group
|
||||
if "group" in custom_kwargs:
|
||||
group_ = custom_kwargs["group"]
|
||||
else:
|
||||
group_ = constants.DEFAULT_GROUP
|
||||
self.plots[group_].append(plot_)
|
||||
|
||||
# Automatically set the legend if label is found
|
||||
# (only do it if legend is not explicitly suppressed)
|
||||
if "label" in kwargs and self.legend is None:
|
||||
self.legend = True
|
||||
|
||||
def logplot(self, *args, **kwargs):
|
||||
"""
|
||||
Plot something on the :class:`Figure` object, in log scale.
|
||||
|
||||
.. note:: See :func:`replot.Figure.plot` for the full documentation.
|
||||
|
||||
.. note:: Side effect of this function is to set the axes to be in \
|
||||
log scale for the associated subplot.
|
||||
|
||||
>>> with replot.figure() as fig: fig.logplot(np.log, (-1, 1))
|
||||
"""
|
||||
kwargs["logscale"] = "log"
|
||||
self.plot(*args, **kwargs)
|
||||
|
||||
def loglogplot(self, *args, **kwargs):
|
||||
"""
|
||||
Plot something on the :class:`Figure` object, in log-log scale.
|
||||
|
||||
.. note:: See :func:`replot.Figure.plot` for the full documentation.
|
||||
|
||||
.. note:: Side effect of this function is to set the axes to be in \
|
||||
log scale for the associated subplot.
|
||||
|
||||
>>> with replot.figure() as fig: fig.logplot(np.log, (-1, 1))
|
||||
"""
|
||||
kwargs["logscale"] = "loglog"
|
||||
self.plot(*args, **kwargs)
|
||||
|
||||
def animate(self, *args, **kwargs):
|
||||
"""
|
||||
Create an animation.
|
||||
|
||||
You can either:
|
||||
- use it directly without arguments to create an animation from \
|
||||
the previously plot commands, cycling through the plots \
|
||||
for each subplot.
|
||||
- TODO: Use an animation function.
|
||||
"""
|
||||
self.animation["type"] = "gif"
|
||||
self.animation["args"] = args
|
||||
self.animation["kwargs"] = kwargs
|
||||
|
||||
###################
|
||||
# Private methods #
|
||||
###################
|
||||
def _set_auto_grid(self, height=None, width=None, ignore_groups=False):
|
||||
"""
|
||||
Apply an automatic grid on the figure, trying to fit best to the \
|
||||
number of plots.
|
||||
|
||||
.. note:: This method must be called after all the plots \
|
||||
have been added to the figure, or the grid will miss some \
|
||||
groups.
|
||||
|
||||
.. note:: The grid will be filled by the groups in lexicographic \
|
||||
order. Unassigned plots go to the last subplot.
|
||||
|
||||
:param height: An optional ``height`` for the grid.
|
||||
:param width: An optional ``height`` for the grid.
|
||||
:param ignore_groups: By default, ``set_grid`` will use groups to \
|
||||
organize plots in different subplots. If you want to put \
|
||||
every plot in a different subplot, regardless of their \
|
||||
groups, you can set this to ``True``.
|
||||
"""
|
||||
if ignore_groups:
|
||||
# If we want to ignore groups, we will start by creating a new
|
||||
# group for every existing plot
|
||||
existing_plots = []
|
||||
for group_ in self.plots:
|
||||
existing_plots.extend(self.plots[group_])
|
||||
self.plots = collections.defaultdict(list,
|
||||
{chr(i): [existing_plots[i]]
|
||||
for i in
|
||||
range(len(existing_plots))})
|
||||
# Find the optimal layout
|
||||
nb_groups = len(self.plots)
|
||||
if height is None and width is not None:
|
||||
height = math.ceil(nb_groups / width)
|
||||
elif width is None and height is not None:
|
||||
width = math.ceil(nb_groups / height)
|
||||
else:
|
||||
height, width = layout.optimal(nb_groups)
|
||||
|
||||
# Apply the layout
|
||||
groups = sorted([k
|
||||
for k in self.plots.keys()
|
||||
if k != constants.DEFAULT_GROUP and
|
||||
len(self.plots[k]) > 0])
|
||||
if len(self.plots[constants.DEFAULT_GROUP]) > 0:
|
||||
# Handle default group separately
|
||||
groups.append(constants.DEFAULT_GROUP)
|
||||
grid_description = ["".join(batch)
|
||||
for batch in tools.batch(groups, width)]
|
||||
self.set_grid(grid_description)
|
||||
|
||||
def _legend(self, axis, overload_legend=None):
|
||||
"""
|
||||
Helper function to handle ``legend`` attribute. It places the legend \
|
||||
correctly depending on attributes and required plots.
|
||||
|
||||
:param axis: The :mod:`matplotlib` axis to put the legend on.
|
||||
:param overload_legend: An optional legend specification to use \
|
||||
instead of the ``legend`` attribute.
|
||||
"""
|
||||
if overload_legend is None:
|
||||
overload_legend = self.legend
|
||||
|
||||
# If no legend is required, just pass
|
||||
if overload_legend is None or overload_legend is False:
|
||||
return
|
||||
|
||||
if overload_legend is True:
|
||||
# If there should be a legend, but no location provided, put it at
|
||||
# best location.
|
||||
location = "best"
|
||||
else:
|
||||
location = overload_legend
|
||||
# Create aliases for "upper" / "top" and "lower" / "bottom"
|
||||
location.replace("top ", "upper ")
|
||||
location.replace("bottom ", "lower ")
|
||||
# Avoid warning if no labels were given for plots
|
||||
nb_labelled_plots = sum(["label" in plt[1]
|
||||
for group in self.plots.values()
|
||||
for plt in group])
|
||||
if nb_labelled_plots > 0:
|
||||
# Add legend
|
||||
axis.legend(loc=location)
|
||||
|
||||
def _render_grid(self):
|
||||
"""
|
||||
Helper method to fill ``self.figure`` and ``self.axes`` with \
|
||||
subplots according to the grid description.
|
||||
|
||||
:returns: A tuple containing the figure object as first element, and \
|
||||
a dict mapping the symbols of the groups to matplotlib axes \
|
||||
as second element.
|
||||
"""
|
||||
# If no grid is provided, create an auto grid for the figure.
|
||||
if self.grid is None:
|
||||
self._set_auto_grid()
|
||||
|
||||
# Axes is a dict associating symbols to matplotlib axes
|
||||
axes = {}
|
||||
figure = plt.figure()
|
||||
# Build all the axes
|
||||
if self.grid is not False:
|
||||
grid_size = (self.grid["height"], self.grid["width"])
|
||||
for subplot in self.grid["grid"]:
|
||||
position, symbol, (rowspan, colspan) = subplot
|
||||
axes[symbol] = plt.subplot2grid(grid_size,
|
||||
position,
|
||||
colspan=colspan,
|
||||
rowspan=rowspan)
|
||||
# Set the palette for the subplot
|
||||
axes[symbol].set_prop_cycle(
|
||||
rpalette.build_cycler_palette(self.palette,
|
||||
len(self.plots[symbol])))
|
||||
if constants.DEFAULT_GROUP not in axes:
|
||||
# Set the default group axis to None if it is not in the grid
|
||||
axes[constants.DEFAULT_GROUP] = None
|
||||
else:
|
||||
axis = plt.subplot2grid((1, 1), (0, 0))
|
||||
# Set the palette for the subplot
|
||||
axis.set_prop_cycle(
|
||||
rpalette.build_cycler_palette(
|
||||
self.palette,
|
||||
sum([len(i) for i in self.plots.values()]))
|
||||
)
|
||||
# Set the axis for every subplot
|
||||
for subplot in self.plots:
|
||||
axes[subplot] = axis
|
||||
# Set attributes
|
||||
self.figure = figure
|
||||
self.axes = axes
|
||||
|
||||
def _set_axes_properties(self, axis, group_):
|
||||
"""
|
||||
Set the various properties on the axes.
|
||||
|
||||
:param axis: A :mod:`matplotlib` axis.
|
||||
:param group_: The group of plots to use to get the properties to set.
|
||||
:returns: None.
|
||||
"""
|
||||
# Handle "invert" kwarg
|
||||
is_inverted_axis = (len(
|
||||
[i
|
||||
for i in self.plots[group_]
|
||||
if "invert" in i[2] and i[2]["invert"]]
|
||||
) > 0)
|
||||
if is_inverted_axis:
|
||||
set_xlabel = axis.set_ylabel
|
||||
set_ylabel = axis.set_xlabel
|
||||
else:
|
||||
set_xlabel = axis.set_xlabel
|
||||
set_ylabel = axis.set_ylabel
|
||||
# Set xlabel and ylabel
|
||||
render_helpers.set_axis_property(group_, set_xlabel, self.xlabel)
|
||||
render_helpers.set_axis_property(group_, set_ylabel, self.ylabel)
|
||||
# Set title
|
||||
render_helpers.set_axis_property(group_, axis.set_title, self.title)
|
||||
# Set legend
|
||||
render_helpers.set_axis_property(
|
||||
group_,
|
||||
lambda v: self._legend(axis, overload_legend=v),
|
||||
self.legend,
|
||||
lambda: self._legend(axis, overload_legend=True)
|
||||
)
|
||||
# Set xrange
|
||||
render_helpers.set_axis_property(group_, axis.set_xlim, self.xrange)
|
||||
# Set yrange
|
||||
render_helpers.set_axis_property(group_, axis.set_ylim, self.yrange)
|
||||
|
||||
def _render_gif_animation(self):
|
||||
"""
|
||||
Handle the render of a GIF-like animation, cycling through the plots.
|
||||
|
||||
:returns: A :mod:`matplotlib` figure.
|
||||
"""
|
||||
# Init
|
||||
# TODO
|
||||
self.axes[constants.DEFAULT_GROUP].set_xlim((-2, 2))
|
||||
self.axes[constants.DEFAULT_GROUP].set_ylim((-2, 2))
|
||||
line, = self.axes[constants.DEFAULT_GROUP].plot([], [])
|
||||
# Define an animation function (closure)
|
||||
def animate(i):
|
||||
# TODO
|
||||
x = np.linspace(0, 2, 1000)
|
||||
y = np.sin(2 * np.pi * (x - 0.01 * i))
|
||||
line.set_data(x, y)
|
||||
return line,
|
||||
# Set default kwargs
|
||||
default_args = (self.figure, animate)
|
||||
default_kwargs = {
|
||||
"frames": 200,
|
||||
"interval": 20,
|
||||
"blit": True,
|
||||
}
|
||||
# Update with overloaded arguments
|
||||
default_args = default_args + self.animation["args"]
|
||||
default_kwargs.update(self.animation["kwargs"])
|
||||
# Keep track of animation object, as it has to persist
|
||||
self.animation["persist"] = [
|
||||
animation.FuncAnimation(*default_args, **default_kwargs)]
|
||||
return self.figure
|
||||
|
||||
def _render_no_animation(self):
|
||||
"""
|
||||
Handle the render of the figure when no animation is used.
|
||||
|
||||
:returns: A :mod:`matplotlib` figure.
|
||||
"""
|
||||
# Add plots
|
||||
for group_ in self.plots:
|
||||
# Get the axis corresponding to current group
|
||||
try:
|
||||
axis = self.axes[group_]
|
||||
except KeyError:
|
||||
# If not found, plot in the default group
|
||||
axis = self.axes[constants.DEFAULT_GROUP]
|
||||
# Skip this plot if the axis is None
|
||||
if axis is None:
|
||||
continue
|
||||
# Plot
|
||||
for plot_ in self.plots[group_]:
|
||||
tmp_plots = axis.plot(*(plot_[0]), **(plot_[1]))
|
||||
# Handle custom kwargs at plotting time
|
||||
if "logscale" in plot_[2]:
|
||||
if plot_[2]["logscale"] == "log":
|
||||
axis.set_xscale("log")
|
||||
elif plot_[2]["logscale"] == "loglog":
|
||||
axis.set_xscale("log")
|
||||
axis.set_yscale("log")
|
||||
if "orthonormal" in plot_[2] and plot_[2]["orthonormal"]:
|
||||
axis.set_aspect("equal")
|
||||
if "xlim" in plot_[2]:
|
||||
axis.set_xlim(*plot_[2]["xlim"])
|
||||
if "ylim" in plot_[2]:
|
||||
axis.set_ylim(*plot_[2]["ylim"])
|
||||
# Do not clip line at the axes boundaries to prevent
|
||||
# extremas from being cropped.
|
||||
for tmp_plot in tmp_plots:
|
||||
tmp_plot.set_clip_on(False)
|
||||
# Set ax properties
|
||||
self._set_axes_properties(axis, group_)
|
||||
return self.figure
|
38
replot/grid/layout.py
Normal file
38
replot/grid/layout.py
Normal file
@ -0,0 +1,38 @@
|
||||
"""
|
||||
Grid layout functions.
|
||||
"""
|
||||
import math
|
||||
|
||||
|
||||
def optimal(nb_items):
|
||||
"""
|
||||
(Naive) attempt to find an optimal grid layout for N elements.
|
||||
|
||||
:param nb_items: The number of square elements to put on the grid.
|
||||
:returns: A tuple ``(height, width)`` containing the number of rows and \
|
||||
the number of cols of the resulting grid.
|
||||
|
||||
>>> _optimal(2)
|
||||
(1, 2)
|
||||
|
||||
>>> _optimal(3)
|
||||
(1, 3)
|
||||
|
||||
>>> _optimal(4)
|
||||
(2, 2)
|
||||
"""
|
||||
# Compute first possibility
|
||||
height1 = math.floor(math.sqrt(nb_items))
|
||||
width1 = math.ceil(nb_items / height1)
|
||||
|
||||
# Compute second possibility
|
||||
width2 = math.ceil(math.sqrt(nb_items))
|
||||
height2 = math.ceil(nb_items / width2)
|
||||
|
||||
# Minimize the product of height and width
|
||||
if height1 * width1 < height2 * width2:
|
||||
height, width = height1, width1
|
||||
else:
|
||||
height, width = height2, width2
|
||||
|
||||
return (height, width)
|
102
replot/helpers/custom_kwargs.py
Normal file
102
replot/helpers/custom_kwargs.py
Normal file
@ -0,0 +1,102 @@
|
||||
"""
|
||||
Parse custom keyword arguments for ``plot`` command.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
from replot import constants
|
||||
from replot import exceptions as exc
|
||||
|
||||
|
||||
def parse(kwargs):
|
||||
"""
|
||||
This method handles custom keyword arguments from plot in \
|
||||
:mod:`replot` which are not in :mod:`matplotlib` function.
|
||||
|
||||
:param kwargs: A dictionary of keyword arguments to handle.
|
||||
:return: A tuple of :mod:`matplotlib` compatible keyword arguments \
|
||||
and of extra :mod:`replot` keyword arguments, both returned \
|
||||
as ``kwargs`` ``dict``.
|
||||
"""
|
||||
# Default values
|
||||
custom_kwargs = {
|
||||
"frame": 0
|
||||
}
|
||||
# Handle "group" argument
|
||||
if "group" in kwargs:
|
||||
if len(kwargs["group"]) > 1:
|
||||
raise exc.InvalidParameterError(
|
||||
"Group name cannot be longer than one unicode character.")
|
||||
elif kwargs["group"] == constants.DEFAULT_GROUP:
|
||||
raise exc.InvalidParameterError(
|
||||
"'%s' is a reserved group name." % (constants.DEFAULT_GROUP,))
|
||||
custom_kwargs["group"] = kwargs["group"]
|
||||
del kwargs["group"]
|
||||
# Handle "line" argument
|
||||
if "line" in kwargs:
|
||||
if not kwargs["line"]: # If should not draw lines, set kwargs for it
|
||||
kwargs["linestyle"] = "None"
|
||||
kwargs["marker"] = "x"
|
||||
del kwargs["line"]
|
||||
# Handle "xrange" argument, alias for xlim
|
||||
if "xrange" in kwargs:
|
||||
kwargs["xlim"] = kwargs["xrange"]
|
||||
# Handle "yrange" argument, alias for xlim
|
||||
if "yrange" in kwargs:
|
||||
kwargs["ylim"] = kwargs["yrange"]
|
||||
|
||||
# Handle other arguments
|
||||
custom_args = [
|
||||
"frame",
|
||||
"invert",
|
||||
"logscale",
|
||||
"orthonormal",
|
||||
"rotate",
|
||||
"xlim",
|
||||
"ylim"]
|
||||
for custom_arg in custom_args:
|
||||
if custom_arg in kwargs:
|
||||
custom_kwargs[custom_arg] = kwargs[custom_arg]
|
||||
del kwargs[custom_arg]
|
||||
|
||||
return (kwargs, custom_kwargs)
|
||||
|
||||
|
||||
def edit_plot_command(plot_, custom_kwargs):
|
||||
"""
|
||||
Edit a plot_ command tuple to take into account custom kwargs, that is \
|
||||
append them to the plot_ command and edit the command accordingly \
|
||||
(for axes inversion for instance).
|
||||
|
||||
:param plot_: a ``(args, kwargs)`` plot command.
|
||||
:param custom_kwargs: A dict of custom kwargs.
|
||||
:returns: a ``(args, kwargs, custom_kwargs)`` plot command.
|
||||
"""
|
||||
# Keep track of custom_kwargs in plot_
|
||||
plot_ += (custom_kwargs,)
|
||||
|
||||
# Handle inversion
|
||||
if "invert" in custom_kwargs and custom_kwargs["invert"]:
|
||||
# Invert X and Y data
|
||||
plot_ = (
|
||||
(plot_[0][1], plot_[0][0]) + plot_[0][2:],
|
||||
plot_[1], plot_[2])
|
||||
|
||||
# Handle rotation
|
||||
if "rotate" in custom_kwargs:
|
||||
# Rotate X, Y data
|
||||
# TODO: Not clean
|
||||
new_X_list = []
|
||||
new_Y_list = []
|
||||
for x, y in zip(plot_[0][0], plot_[0][1]):
|
||||
angle = np.deg2rad(custom_kwargs["rotate"])
|
||||
new_X_list.append(
|
||||
np.cos(angle) * x +
|
||||
np.sin(angle) * y)
|
||||
new_Y_list.append(
|
||||
-np.sin(angle) * x +
|
||||
np.cos(angle) * y)
|
||||
plot_ = (
|
||||
(new_X_list, new_Y_list) + plot_[0][2:],
|
||||
plot_[1], plot_[2])
|
||||
|
||||
return plot_
|
115
replot/helpers/custom_mpl.py
Normal file
115
replot/helpers/custom_mpl.py
Normal file
@ -0,0 +1,115 @@
|
||||
"""
|
||||
Functions to set custom :mod:`matplotlib` parameters.
|
||||
"""
|
||||
import shutil
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def custom_rc(rc=None):
|
||||
"""
|
||||
Overload ``matplotlib.rcParams`` to enable advanced features if \
|
||||
available. In particular, use LaTeX if available.
|
||||
|
||||
:param rc: An optional dict to overload some :mod:`matplotlib` rc params.
|
||||
:returns: A ``matplotlib.rc_context`` object to use in a ``with`` \
|
||||
statement.
|
||||
"""
|
||||
custom_rc_ = {}
|
||||
# Add LaTeX in rc if available
|
||||
if(shutil.which("latex") is not None and
|
||||
shutil.which("gs") is not None and
|
||||
shutil.which("dvipng") is not None):
|
||||
# LateX dependencies are all available
|
||||
custom_rc_["text.usetex"] = True
|
||||
custom_rc_["text.latex.unicode"] = True
|
||||
# Use LaTeX default font family
|
||||
# See https://stackoverflow.com/questions/17958485/matplotlib-not-using-latex-font-while-text-usetex-true
|
||||
custom_rc_["font.family"] = "serif"
|
||||
custom_rc_["font.serif"] = "cm"
|
||||
# Scale everything
|
||||
custom_rc_.update(_rc_scaling())
|
||||
# Set axes style
|
||||
custom_rc_.update(_rc_axes_style())
|
||||
# Overload if necessary
|
||||
if rc is not None:
|
||||
custom_rc_.update(rc)
|
||||
# Return a context object
|
||||
return custom_rc_
|
||||
|
||||
|
||||
def _rc_scaling():
|
||||
"""
|
||||
Scale the elements of the figure to get a better rendering.
|
||||
|
||||
Settings borrowed from
|
||||
[Seaborn](https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py#L344).
|
||||
|
||||
:returns: a :mod:`matplotlib` ``rcParams``-like dict.
|
||||
"""
|
||||
rc_params = {
|
||||
"figure.figsize": np.array([8, 5.5]),
|
||||
# Set misc font sizes
|
||||
"font.size": 12,
|
||||
"axes.labelsize": 11,
|
||||
"axes.titlesize": 12,
|
||||
"xtick.labelsize": 10,
|
||||
"ytick.labelsize": 10,
|
||||
"legend.fontsize": 10,
|
||||
# Set misc linewidth
|
||||
"grid.linewidth": 1,
|
||||
"lines.linewidth": 1.75,
|
||||
"patch.linewidth": .3,
|
||||
"lines.markersize": 7,
|
||||
"lines.markeredgewidth": 1.75,
|
||||
# Disable ticks
|
||||
"xtick.major.width": 0,
|
||||
"ytick.major.width": 0,
|
||||
"xtick.minor.width": 0,
|
||||
"ytick.minor.width": 0,
|
||||
# Set ticks padding
|
||||
"xtick.major.pad": 7,
|
||||
"ytick.major.pad": 7,
|
||||
}
|
||||
return rc_params
|
||||
|
||||
|
||||
def _rc_axes_style():
|
||||
"""
|
||||
Set the style of the plot and the axes. Things like set a grid etc.
|
||||
|
||||
Settings borrowed from
|
||||
[Seaborn](https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py#L344).
|
||||
|
||||
:returns: a :mod:`matplotlib` ``rcParams``-like dict.
|
||||
"""
|
||||
# Use dark gray instead of black for better readability on screen
|
||||
dark_gray = ".15"
|
||||
rc_params = {
|
||||
# Colors
|
||||
"figure.facecolor": "white",
|
||||
"text.color": dark_gray,
|
||||
# Legend
|
||||
"legend.frameon": False, # No frame around legend
|
||||
"legend.numpoints": 1,
|
||||
"legend.scatterpoints": 1,
|
||||
# Ticks
|
||||
"xtick.direction": "out",
|
||||
"ytick.direction": "out",
|
||||
"xtick.color": dark_gray,
|
||||
"ytick.color": dark_gray,
|
||||
"lines.solid_capstyle": "round",
|
||||
# Axes
|
||||
"axes.axisbelow": True,
|
||||
"axes.linewidth": 0,
|
||||
"axes.labelcolor": dark_gray,
|
||||
"axes.grid": True,
|
||||
"axes.facecolor": "EAEAF2",
|
||||
"axes.edgecolor": "white",
|
||||
# Grid
|
||||
"grid.linestyle": "-",
|
||||
"grid.color": "white",
|
||||
# Image
|
||||
"image.cmap": "Greys"
|
||||
}
|
||||
return rc_params
|
31
replot/helpers/palette.py
Normal file
31
replot/helpers/palette.py
Normal file
@ -0,0 +1,31 @@
|
||||
"""
|
||||
Palette handling functions.
|
||||
"""
|
||||
import cycler
|
||||
import palettable
|
||||
|
||||
|
||||
def default(n):
|
||||
"""
|
||||
Default palette is a CubeHelix perceptual rainbow palette with length the
|
||||
number of plots.
|
||||
|
||||
:param n: The number of colors in the palette.
|
||||
:returns: The palette as a list of colors (as RGB tuples).
|
||||
"""
|
||||
return palettable.cubehelix.Cubehelix.make(
|
||||
start_hue=240., end_hue=-300., min_sat=1., max_sat=2.5,
|
||||
min_light=0.3, max_light=0.8, gamma=.9, n=n).mpl_colors
|
||||
|
||||
|
||||
def build_cycler_palette(palette, n):
|
||||
"""
|
||||
Build a cycler palette for the selected subplot.
|
||||
|
||||
:param n: number of colors in the palette.
|
||||
:returns: a cycler object for the palette.
|
||||
"""
|
||||
if hasattr(palette, "__call__"):
|
||||
return cycler.cycler("color", palette(n))
|
||||
else:
|
||||
return cycler.cycler("color", palette)
|
43
replot/helpers/plot.py
Normal file
43
replot/helpers/plot.py
Normal file
@ -0,0 +1,43 @@
|
||||
"""
|
||||
Various helper functions for plotting.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
from replot import adaptive_sampling
|
||||
from replot import exceptions as exc
|
||||
|
||||
|
||||
def plot_function(data, *args, **kwargs):
|
||||
"""
|
||||
Helper function to handle plotting of unevaluated functions (trying \
|
||||
to evaluate it nicely and rendering the plot).
|
||||
|
||||
:param data: The function to plot.
|
||||
:returns: A tuple of ``(args, kwargs)`` representing the plot.
|
||||
|
||||
.. seealso:: The documentation of the ``replot.Figure.plot`` method.
|
||||
|
||||
.. note:: ``args`` is used to handle the interval or point series on \
|
||||
which the function should be evaluated. ``kwargs`` are passed \
|
||||
directly to ``matplotlib.pyplot.plot`.
|
||||
"""
|
||||
if len(args) == 0:
|
||||
# If no interval specified, raise an issue
|
||||
raise exc.InvalidParameterError(
|
||||
"You should pass a plotting interval to the plot command.")
|
||||
elif isinstance(args[0], tuple):
|
||||
# Interval specified, use it and adaptive plotting
|
||||
x_values, y_values = adaptive_sampling.sample_function(
|
||||
data,
|
||||
args[0],
|
||||
tol=1e-3)
|
||||
elif isinstance(args[0], (list, np.ndarray)):
|
||||
# List of points specified, use them and compute values of the
|
||||
# function
|
||||
x_values = args[0]
|
||||
y_values = [data(i) for i in x_values]
|
||||
else:
|
||||
raise exc.InvalidParameterError(
|
||||
"Second parameter in plot command should be a tuple " +
|
||||
"specifying plotting interval.")
|
||||
return ((x_values, y_values) + args[1:], kwargs)
|
28
replot/helpers/render.py
Normal file
28
replot/helpers/render.py
Normal file
@ -0,0 +1,28 @@
|
||||
"""
|
||||
Various helper functions for plotting.
|
||||
"""
|
||||
|
||||
|
||||
def set_axis_property(group_, setter, value, default_setter=None):
|
||||
"""
|
||||
Set a property on an axis at render time.
|
||||
|
||||
:param group_: The subplot for this axis.
|
||||
:param setter: The setter to use to set the axis property.
|
||||
:param value: The value for the property, either a value or a dict with \
|
||||
group as key.
|
||||
:param default_setter: Default setter to call if ``value`` is a dict but \
|
||||
has no key for the given subplot.
|
||||
:returns: None.
|
||||
"""
|
||||
if isinstance(value, dict):
|
||||
try:
|
||||
if value[group_] is not None:
|
||||
setter(value[group_])
|
||||
except KeyError:
|
||||
# No entry for this axis in the dict, use default argument
|
||||
if default_setter is not None:
|
||||
default_setter()
|
||||
else:
|
||||
if value is not None:
|
||||
setter(value)
|
Loading…
Reference in New Issue
Block a user