Handle groups of plots

But no difference between grouped plots and ungrouped plots at the
moment.
This commit is contained in:
Lucas Verney 2016-03-02 17:40:39 +01:00
parent f9c55c336d
commit 809044c698
2 changed files with 1697 additions and 63 deletions

File diff suppressed because one or more lines are too long

View File

@ -2,6 +2,7 @@
The :mod:`replot` module is a (sane) Python plotting module, abstracting on top
of Matplotlib.
"""
import collections
import shutil
import matplotlib.pyplot as plt
@ -15,25 +16,6 @@ from replot import exceptions as exc
__VERSION__ = "0.0.1"
def mpl_custom_rc_context():
"""
Overload ``matplotlib.rcParams`` to enable advanced features if \
available. In particular, use LaTeX if available.
:returns: A ``matplotlib.rc_context`` object to use in a ``with`` \
statement.
"""
custom_rc = {}
# Add LaTeX in rc if available
if(shutil.which("latex") is not None and
shutil.which("gs") is not None and
shutil.which("dvipng") is not None):
# LateX dependencies are all available
custom_rc["text.usetex"] = True
custom_rc["text.latex.unicode"] = True
return plt.rc_context(rc=custom_rc)
class Figure():
"""
The main class from :mod:`replot`, representing a figure. Can be used \
@ -69,7 +51,7 @@ class Figure():
self.palette = palette
self.max_colors = max_colors
self.legend = legend
self.plots = []
self.plots = collections.defaultdict(list) # keys are groups
def __enter__(self):
return self
@ -91,12 +73,13 @@ class Figure():
# Create figure
figure, axes = plt.subplots()
# Add plots
for plot_ in self.plots:
tmp_plots = axes.plot(*(plot_[0]), **(plot_[1]))
# Do not clip line at the axes boundaries to prevent
# extremas from being cropped.
for tmp_plot in tmp_plots:
tmp_plot.set_clip_on(False)
for group_ in self.plots:
for plot_ in self.plots[group_]:
tmp_plots = axes.plot(*(plot_[0]), **(plot_[1]))
# Do not clip line at the axes boundaries to prevent
# extremas from being cropped.
for tmp_plot in tmp_plots:
tmp_plot.set_clip_on(False)
# Set properties
axes.set_xlabel(self.xlabel)
axes.set_ylabel(self.ylabel)
@ -123,66 +106,49 @@ class Figure():
- Two arguments being a function and an interval represented by \
a tuple of its bounds.
.. note:: ``kwargs`` arguments are directly passed to \
.. note:: ``kwargs`` arguments are passed to \
``matplotlib.pyplot.plot``.
.. note:: You can use some :mod:`replot` specific keyword arguments:
- ``group`` which defines permits to group plots together, in \
subplots (one unicode character maximum).
>>> with replot.figure() as fig: fig.plot(np.sin, (-1, 1))
>>> with replot.figure() as fig: fig.plot(np.sin, [-1, -0.9, , 1])
>>> with replot.figure() as fig: fig.plot([1, 2, 3], [4, 5, 6])
>>> with replot.figure() as fig: fig.plot([1, 2, 3],
[4, 5, 6], linewidth=2.0)
>>> with replot.figure() as fig: fig.plot([1, 2, 3],
[4, 5, 6], group="a")
"""
if len(args) == 0:
raise exc.InvalidParameterError(
"You should pass at least one argument to this function.")
# Extra custom kwargs (the ones from replot but not matplotlib) from
# kwargs
kwargs, custom_kwargs = _handle_custom_plot_arguments(kwargs)
if hasattr(args[0], "__call__"):
# We want to plot a function
self._plot_function(args[0], *(args[1:]), **kwargs)
plot_ = _plot_function(args[0], *(args[1:]), **kwargs)
else:
# Else, it is a point series, and we just have to store it for
# later plotting.
self.plots.append((args, kwargs))
plot_ = (args, kwargs)
# Add the plot to the correct group
if "group" in custom_kwargs:
self.plots[custom_kwargs["group"]].append(plot_)
else:
self.plots["default"].append(plot_)
# Automatically set the legend if label is found
# (only do it if legend is not explicitly suppressed)
if "label" in kwargs and self.legend is None:
self.legend = True
def _plot_function(self, data, *args, **kwargs):
"""
Helper function to handle plotting of unevaluated functions (trying \
to evaluate it nicely and rendering the plot).
:param data: The function to plot.
.. seealso:: The documentation of the ``replot.Figure.plot`` method.
.. note:: ``args`` is used to handle the interval or point series on \
which the function should be evaluated. ``kwargs`` are passed \
directly to ``matplotlib.pyplot.plot`.
"""
if len(args) == 0:
# If no interval specified, raise an issue
raise exc.InvalidParameterError(
"You should pass a plotting interval to the plot command.")
elif isinstance(args[0], tuple):
# Interval specified, use it and adaptive plotting
x_values, y_values = adaptive_sampling.sample_function(
data,
args[0],
tol=1e-3)
elif isinstance(args[0], (list, np.ndarray)):
# List of points specified, use them and compute values of the
# function
x_values = args[0]
y_values = [data(i) for i in x_values]
else:
raise exc.InvalidParameterError(
"Second parameter in plot command should be a tuple " +
"specifying plotting interval.")
self.plots.append(((x_values, y_values) + args[1:], kwargs))
def _legend(self, axes):
"""
Helper function to handle ``legend`` attribute. It places the legend \
@ -250,3 +216,79 @@ def plot(data, **kwargs):
else:
figure.plot(plot_)
figure.show()
def mpl_custom_rc_context():
"""
Overload ``matplotlib.rcParams`` to enable advanced features if \
available. In particular, use LaTeX if available.
:returns: A ``matplotlib.rc_context`` object to use in a ``with`` \
statement.
"""
custom_rc = {}
# Add LaTeX in rc if available
if(shutil.which("latex") is not None and
shutil.which("gs") is not None and
shutil.which("dvipng") is not None):
# LateX dependencies are all available
custom_rc["text.usetex"] = True
custom_rc["text.latex.unicode"] = True
return plt.rc_context(rc=custom_rc)
def _handle_custom_plot_arguments(kwargs):
"""
This method handles custom keyword arguments from plot in \
:mod:`replot` which are not in :mod:`matplotlib` function.
:param kwargs: A dictionary of keyword arguments to handle.
:return: A tuple of :mod:`matplotlib` compatible keyword arguments \
and of extra :mod:`replot` keyword arguments, both returned \
as ``dict``.
"""
custom_kwargs = {}
# Handle "group" argument
if "group" in kwargs:
if len(kwargs["group"]) > 1:
raise exc.InvalidParameterError(
"Group name cannot be longer than one unicode character.")
custom_kwargs["group"] = kwargs["group"]
del kwargs["group"]
return (kwargs, custom_kwargs)
def _plot_function(data, *args, **kwargs):
"""
Helper function to handle plotting of unevaluated functions (trying \
to evaluate it nicely and rendering the plot).
:param data: The function to plot.
:returns: A tuple of ``(args, kwargs)`` representing the plot.
.. seealso:: The documentation of the ``replot.Figure.plot`` method.
.. note:: ``args`` is used to handle the interval or point series on \
which the function should be evaluated. ``kwargs`` are passed \
directly to ``matplotlib.pyplot.plot`.
"""
if len(args) == 0:
# If no interval specified, raise an issue
raise exc.InvalidParameterError(
"You should pass a plotting interval to the plot command.")
elif isinstance(args[0], tuple):
# Interval specified, use it and adaptive plotting
x_values, y_values = adaptive_sampling.sample_function(
data,
args[0],
tol=1e-3)
elif isinstance(args[0], (list, np.ndarray)):
# List of points specified, use them and compute values of the
# function
x_values = args[0]
y_values = [data(i) for i in x_values]
else:
raise exc.InvalidParameterError(
"Second parameter in plot command should be a tuple " +
"specifying plotting interval.")
return ((x_values, y_values) + args[1:], kwargs)