Basic bibliography support

This commit is contained in:
Lucas Verney 2016-04-15 00:28:23 +02:00
parent 857a0c67c7
commit 685e76862f
4 changed files with 29 additions and 3 deletions

View File

@ -4,7 +4,7 @@ ASCIIMATH=filters/asciimath/pandoc-asciimath
HS_FILTERS_NAMES = HS_FILTERS_NAMES =
PY_FILTERS_NAMES = pandoc-svg.py PY_FILTERS_NAMES = pandoc-svg.py
EXT_FILTERS = pandoc-crossref $(ASCIIMATH) EXT_FILTERS = pandoc-crossref pandoc-citeproc $(ASCIIMATH)
HS_FILTERS = $(addprefix filters/, $(HS_FILTERS_NAMES)) HS_FILTERS = $(addprefix filters/, $(HS_FILTERS_NAMES))
PY_FILTERS = $(addprefix filters/, $(PY_FILTERS_NAMES)) PY_FILTERS = $(addprefix filters/, $(PY_FILTERS_NAMES))

View File

@ -13,3 +13,8 @@ include them in the document easily.
easy numbering and referencing. easy numbering and referencing.
* Include [asciimath](https://github.com/Kerl13/AsciiMath) for easy math typing. * Include [asciimath](https://github.com/Kerl13/AsciiMath) for easy math typing.
* Include [pandoc-citeproc](https://github.com/jgm/pandoc-citeproc) for
bibliography management and citation. See [this part of Pandoc
README](http://pandoc.org/README.html#citations) as well for more infos on
this.

13
notes.bib Normal file
View File

@ -0,0 +1,13 @@
@article{foobar,
doi = {10.1209/0295-5075/111/40005},
url = {http://dx.doi.org/10.1209/0295-5075/111/40005},
year = {2015},
month = {aug},
publisher = {{IOP} Publishing},
volume = {111},
number = {4},
pages = {40005},
author = {Lucas Verney and Lev Pitaevskii and Sandro Stringari},
title = {Hybridization of first and second sound in a weakly interacting Bose gas},
journal = {{EPL}}
}

View File

@ -6,6 +6,12 @@ date: \today
# Pandoc-crossref options # Pandoc-crossref options
cref: True cref: True
chapters: True chapters: True
# Pandoc-citeproc options
bibliography: notes.bib
link-citations: True
lang: en-US
reference-section-title: References
nocite:
--- ---
\pagebreak \pagebreak
@ -19,3 +25,5 @@ The following asciimath code
will be rendered the following way will be rendered the following way
$$ sum_(k=1)^n k^3 = ((n(n+1))/2)^2 $$ $$ sum_(k=1)^n k^3 = ((n(n+1))/2)^2 $$
this is a citation [@foobar].