204 lines
8.8 KiB
Python
Executable File
204 lines
8.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
This is a client for MPD to generate a random playlist starting from the last
|
|
song of the current playlist and iterating using values computed using Bliss.
|
|
|
|
MPD connection settings are taken from environment variables, following MPD_HOST
|
|
and MPD_PORT scheme described in `mpc` man.
|
|
|
|
You can pass an integer argument to the script to change the length of the
|
|
generated playlist (default is to add 20 songs).
|
|
"""
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import sqlite3
|
|
import subprocess
|
|
import sys
|
|
|
|
from mpd import MPDClient
|
|
|
|
# TODO: Timeout
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
_QUEUE_LENGTH = 20
|
|
_DISTANCE_THRESHOLD = 4.0
|
|
_SIMILARITY_THRESHOLD = 0.95
|
|
|
|
if "XDG_DATA_HOME" in os.environ:
|
|
_BLISSIFY_DATA_HOME = os.path.expandvars("$XDG_DATA_HOME/blissify")
|
|
else:
|
|
_BLISSIFY_DATA_HOME = os.path.expanduser("~/.local/share/blissify")
|
|
|
|
|
|
def main(queue_length):
|
|
# Get MPD connection settings
|
|
try:
|
|
mpd_host = os.environ["MPD_HOST"]
|
|
mpd_password, mpd_host = mpd_host.split("@")
|
|
except KeyError:
|
|
mpd_host = "localhost"
|
|
mpd_password = None
|
|
try:
|
|
mpd_port = os.environ["MPD_PORT"]
|
|
except KeyError:
|
|
mpd_port = 6600
|
|
|
|
# Connect to MPD²
|
|
client = MPDClient()
|
|
client.connect(mpd_host, mpd_port)
|
|
if mpd_password is not None:
|
|
client.password(mpd_password)
|
|
# Connect to db
|
|
db_path = os.path.join(_BLISSIFY_DATA_HOME, "db.sqlite3")
|
|
logging.debug("Using DB path: %s." % (db_path,))
|
|
conn = sqlite3.connect(db_path)
|
|
conn.row_factory = sqlite3.Row
|
|
conn.execute('pragma foreign_keys=ON')
|
|
cur = conn.cursor()
|
|
|
|
# Ensure random is not enabled
|
|
status = client.status()
|
|
if status["random"] != 0:
|
|
logging.warning("Random mode is enabled. Are you sure you want it?")
|
|
|
|
# Take the last song from current playlist and iterate from it
|
|
playlist = client.playlist()
|
|
if len(playlist) > 0:
|
|
current_song = playlist[-1].replace("file:", "").strip()
|
|
# If current playlist is empty
|
|
else:
|
|
# Add a random song to start with
|
|
all_songs = [x["file"] for x in client.listall() if "file" in x]
|
|
current_song = random.choice(all_songs)
|
|
client.add(current_song)
|
|
logging.info("Currently played song is %s." % (current_song,))
|
|
|
|
# Get current song coordinates
|
|
cur.execute("SELECT id, tempo, amplitude, frequency, attack, filename FROM songs WHERE filename=?", (current_song,))
|
|
current_song_coords = cur.fetchone()
|
|
if current_song_coords is None:
|
|
logging.warning("Current song %s is not in db. You should update the db." %
|
|
(current_song,))
|
|
client.close()
|
|
client.disconnect()
|
|
sys.exit(1)
|
|
|
|
for i in range(queue_length):
|
|
# Get cached distances from db
|
|
cur.execute(
|
|
"SELECT id, filename, distance, similarity, tempo, amplitude, frequency, attack FROM (SELECT s2.id AS id, s2.filename AS filename, s2.tempo AS tempo, s2.amplitude AS amplitude, s2.frequency AS frequency, s2.attack AS attack, distances.distance AS distance, distances.similarity AS similarity FROM distances INNER JOIN songs AS s1 ON s1.id=distances.song1 INNER JOIN songs AS s2 on s2.id=distances.song2 WHERE s1.filename=? UNION SELECT s1.id as id, s1.filename AS filename, s1.tempo AS tempo, s1.amplitude AS amplitude, s1.frequency AS frequency, s1.attack AS attack, distances.distance as distance, distances.similarity AS similarity FROM distances INNER JOIN songs AS s1 ON s1.id=distances.song1 INNER JOIN songs AS s2 on s2.id=distances.song2 WHERE s2.filename=?) ORDER BY distance ASC",
|
|
(current_song_coords["filename"], current_song_coords["filename"]))
|
|
cached_distances = [row
|
|
for row in cur.fetchall()
|
|
if ("file: %s" % (row["filename"],)) not in client.playlist()]
|
|
cached_distances_songs = [i["filename"] for i in cached_distances]
|
|
|
|
# If distance to closest song is ok, just add the song
|
|
if len(cached_distances) > 0:
|
|
if(cached_distances[0]["distance"] < _DISTANCE_THRESHOLD and
|
|
cached_distances[0]["similarity"] > _SIMILARITY_THRESHOLD):
|
|
# Push it on the queue
|
|
client.add(cached_distances[0]["filename"])
|
|
# Continue using latest pushed song as current song
|
|
logging.info("Using cached distance. Found %s. Distance is (%f, %f)." %
|
|
(cached_distances[0]["filename"],
|
|
cached_distances[0]["distance"],
|
|
cached_distances[0]["similarity"]))
|
|
current_song_coords = cached_distances[0]
|
|
continue
|
|
|
|
# Get all other songs coordinates
|
|
closest_song = None
|
|
cur.execute("SELECT id, tempo, amplitude, frequency, attack, filename FROM songs")
|
|
for tmp_song_data in cur.fetchall():
|
|
if(tmp_song_data["filename"] == current_song_coords["filename"] or
|
|
tmp_song_data["filename"] in cached_distances_songs or
|
|
("file: %s" % (tmp_song_data["filename"],)) in client.playlist()):
|
|
# Skip current song and already processed songs
|
|
logging.debug("Skipping %s." % (tmp_song_data["filename"]))
|
|
continue
|
|
# Compute distance
|
|
distance = math.sqrt(
|
|
(current_song_coords["tempo"] - tmp_song_data["tempo"])**2 +
|
|
(current_song_coords["amplitude"] - tmp_song_data["amplitude"])**2 +
|
|
(current_song_coords["frequency"] - tmp_song_data["frequency"])**2 +
|
|
(current_song_coords["attack"] - tmp_song_data["attack"])**2
|
|
)
|
|
similarity = (
|
|
(current_song_coords["tempo"] * tmp_song_data["tempo"] +
|
|
current_song_coords["amplitude"] * tmp_song_data["amplitude"] +
|
|
current_song_coords["frequency"] * tmp_song_data["frequency"] +
|
|
current_song_coords["attack"] * tmp_song_data["attack"]) /
|
|
(
|
|
math.sqrt(
|
|
current_song_coords["tempo"]**2 +
|
|
current_song_coords["amplitude"]**2 +
|
|
current_song_coords["frequency"]**2 +
|
|
current_song_coords["attack"]**2) *
|
|
math.sqrt(
|
|
tmp_song_data["tempo"]**2 +
|
|
tmp_song_data["amplitude"]**2 +
|
|
tmp_song_data["frequency"]**2 +
|
|
tmp_song_data["attack"]**2)
|
|
)
|
|
)
|
|
logging.debug("Distance between %s and %s is (%f, %f)." %
|
|
(current_song_coords["filename"],
|
|
tmp_song_data["filename"], distance, similarity))
|
|
# Store distance in db cache
|
|
try:
|
|
logging.debug("Storing distance in database.")
|
|
conn.execute(
|
|
"INSERT INTO distances(song1, song2, distance, similarity) VALUES(?, ?, ?, ?)",
|
|
(current_song_coords["id"], tmp_song_data["id"], distance,
|
|
similarity))
|
|
conn.commit()
|
|
except sqlite3.IntegrityError:
|
|
logging.warning("Unable to insert distance in database.")
|
|
conn.rollback()
|
|
|
|
# Update the closest song
|
|
# TODO: Find a better heuristic?
|
|
if closest_song is None or distance < closest_song[1]:
|
|
closest_song = (tmp_song_data, distance, similarity)
|
|
|
|
# If distance is ok, break from the loop
|
|
if(distance < _DISTANCE_THRESHOLD and
|
|
similarity > _SIMILARITY_THRESHOLD):
|
|
break
|
|
|
|
# If a close enough song is found
|
|
if(distance < _DISTANCE_THRESHOLD and
|
|
similarity > _SIMILARITY_THRESHOLD):
|
|
# Push it on the queue
|
|
client.add(tmp_song_data["filename"])
|
|
# Continue using latest pushed song as current song
|
|
logging.info("Found a close song: %s. Distance is (%f, %f)." %
|
|
(tmp_song_data["filename"], distance, similarity))
|
|
current_song_coords = tmp_song_data
|
|
continue
|
|
# If no song found, take the closest one
|
|
else:
|
|
logging.info("No close enough song found. Using %s. Distance is (%f, %f)." %
|
|
(closest_song[0]["filename"], closest_song[1],
|
|
closest_song[2]))
|
|
current_song_coords = closest_song[0]
|
|
client.add(closest_song[0]["filename"])
|
|
continue
|
|
conn.close()
|
|
client.close()
|
|
client.disconnect()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
queue_length = _QUEUE_LENGTH
|
|
if len(sys.argv) > 1:
|
|
try:
|
|
queue_length = int(sys.argv[1])
|
|
except ValueError:
|
|
sys.exit("Usage: %s [PLAYLIST_LENGTH]" % (sys.argv[0],))
|
|
main(queue_length)
|